

Model evaluation

Introduction to SDMs: theory and practice in R

Sapienza University, Rome

9-11 June, 2021

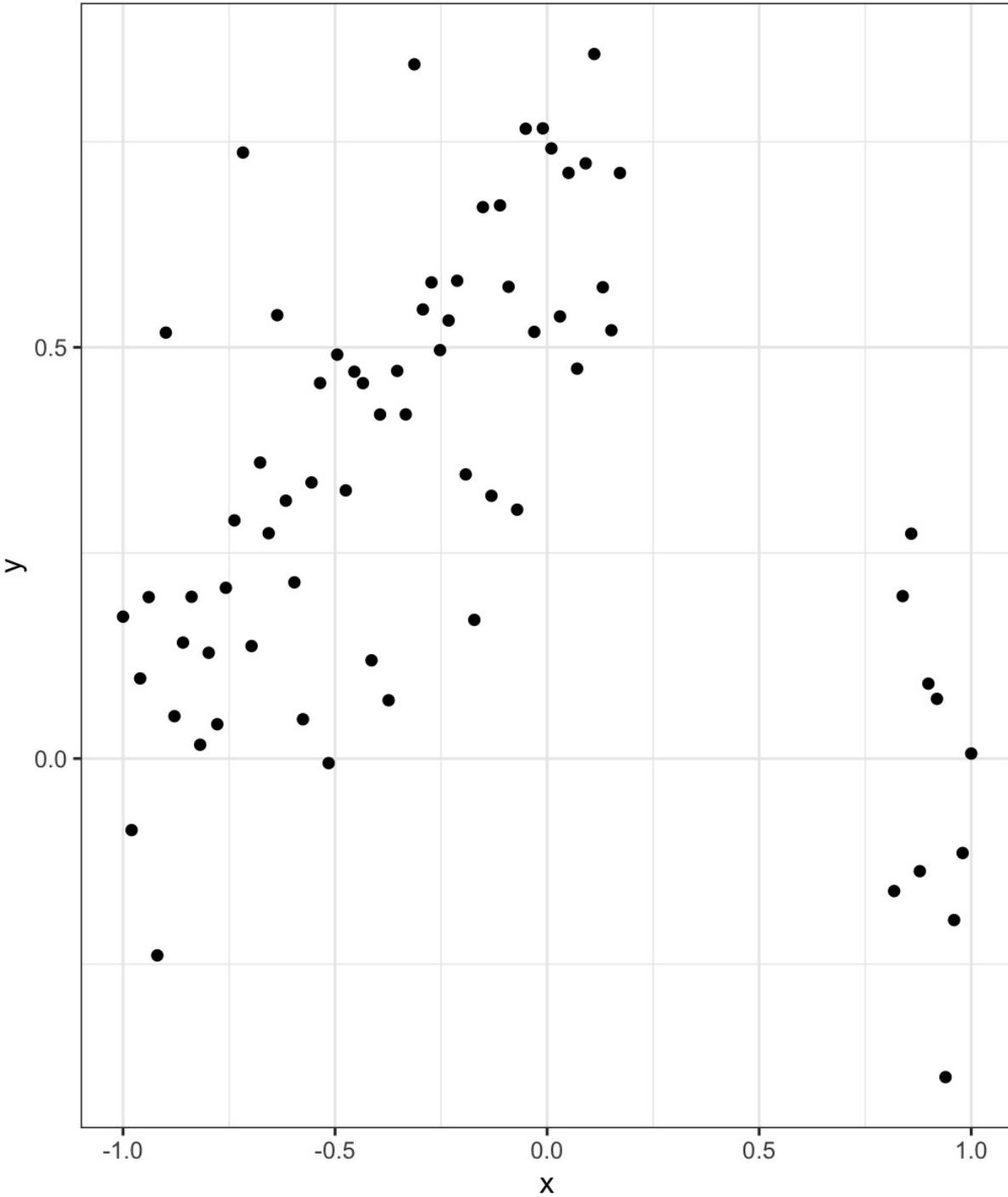
Jamie M. Kass

Postdoctoral Scholar

Okinawa Institute of Science and Technology Graduate University (OIST)

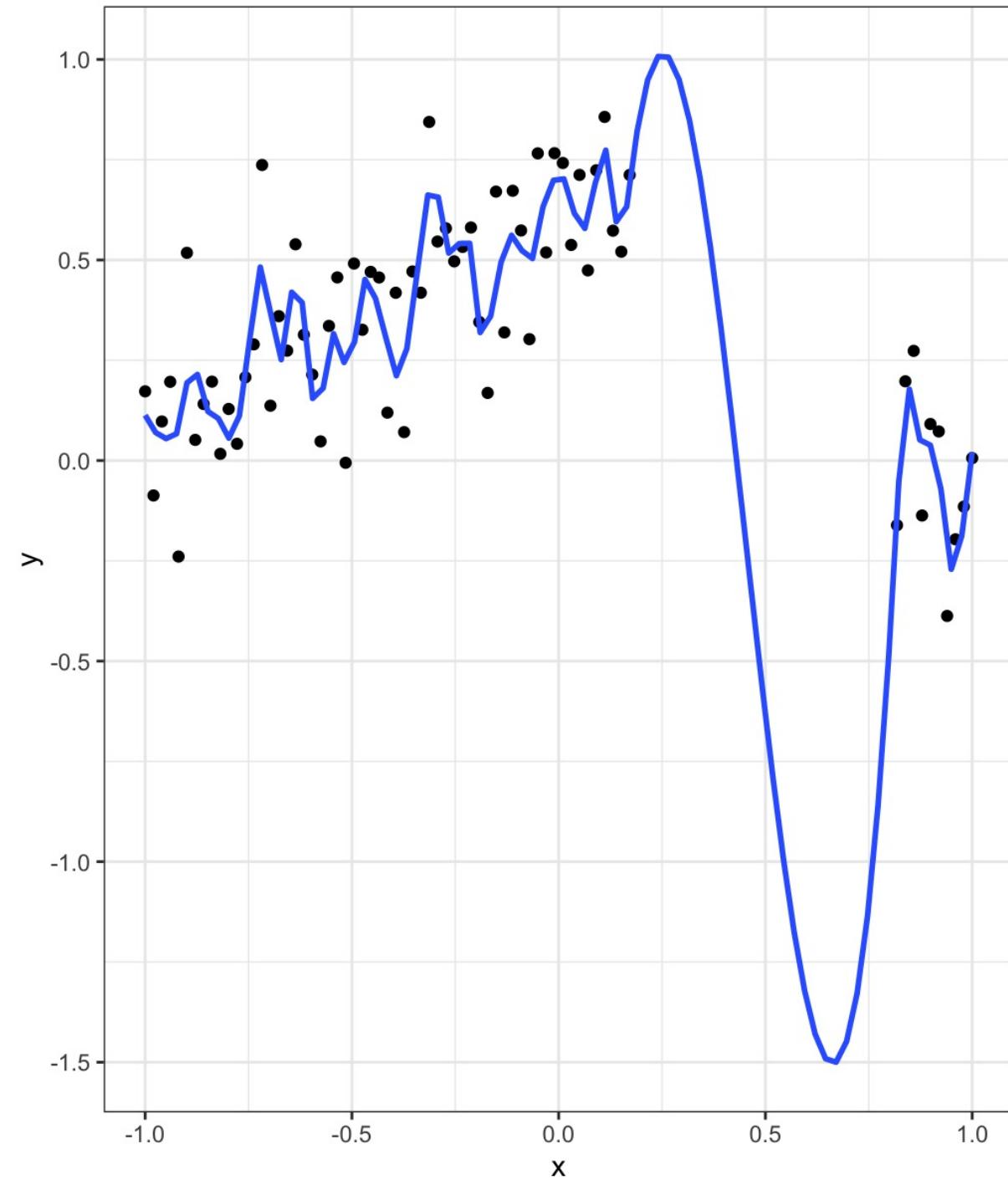
Model complexity

- data is messy in varying degrees



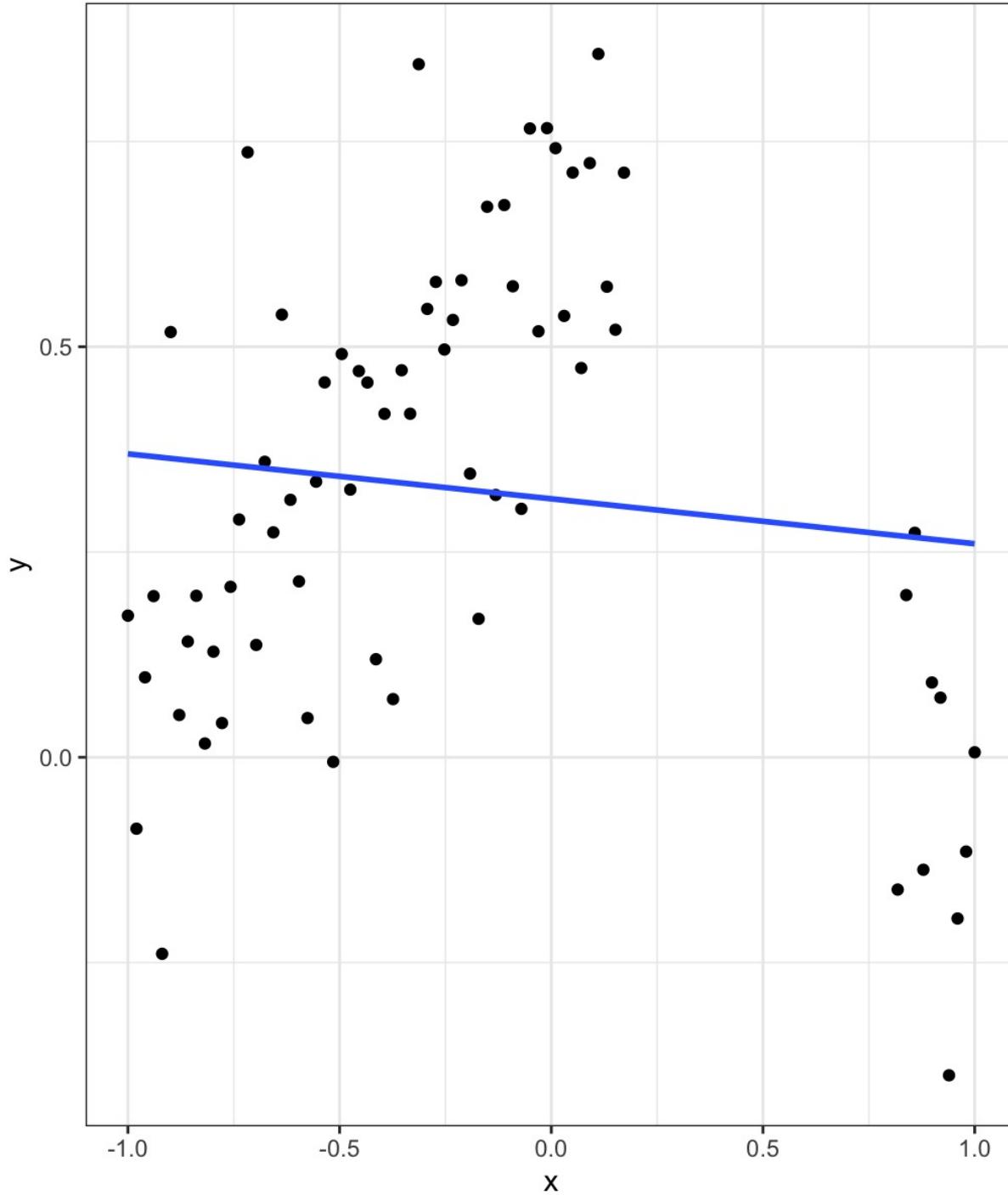
Model complexity

- data is messy in varying degrees
- models that are too complex can overpredict data



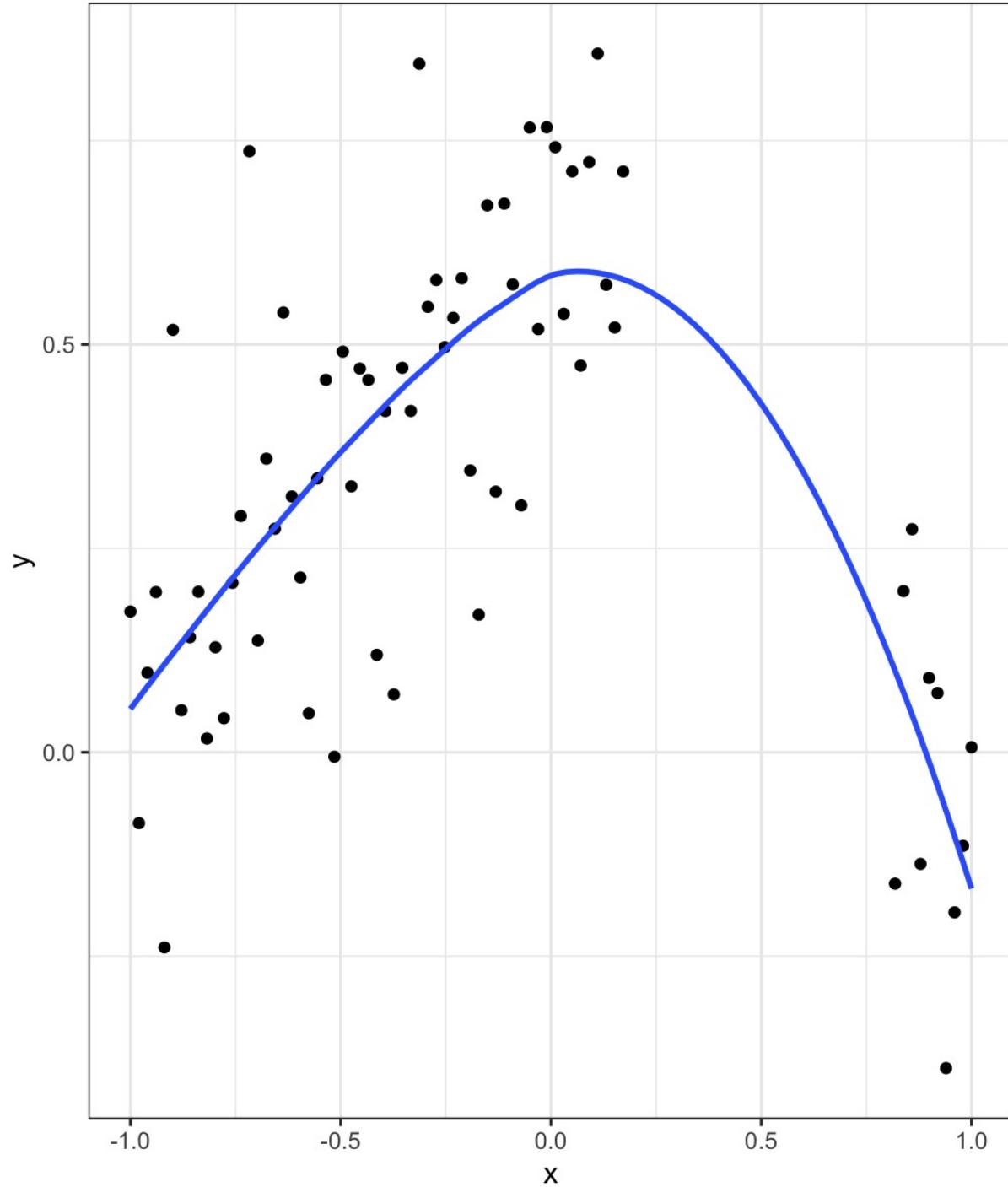
Model complexity

- data is messy in varying degrees
- models that are too complex can overpredict data
- models that are too simple can underpredict data



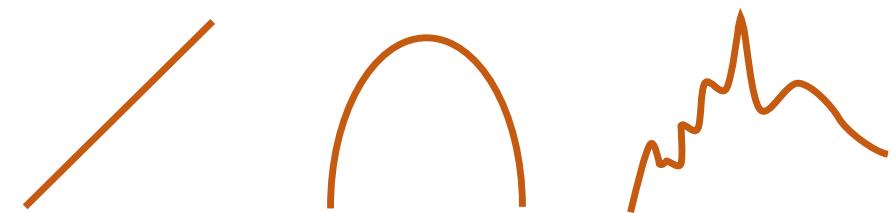
Model complexity

- data is messy in varying degrees
- models that are too complex can overpredict data
- models that are too simple can underpredict data
- we need a model in-between



What creates model complexity?

- the number of predictor variables used to fit the model
- the shapes of the modeled responses
- the presence of variable interactions



$$r = a + b_1 * b_2$$

How do we tell how well the model fits?

- model evaluation: measures of model performance on different data sets
- many metrics exist, and it can get confusing
- interpreting the results of model evaluation is also not straightforward
- key questions: is the model overfit (too complex) or underfit (too simple)?

How do we control complexity?

- exhaustive model selection for standard regression models
- machine learning algorithms have tuning parameters to penalize complexity
- Examples are Maxent, random forest, boosted regression trees, neural networks, lasso regression

What does a model evaluation tell us?

- model performance on the data used to build the model
- model performance on new data
- ecological realism for:
 - relationships with predictor variables
 - spatial predictions

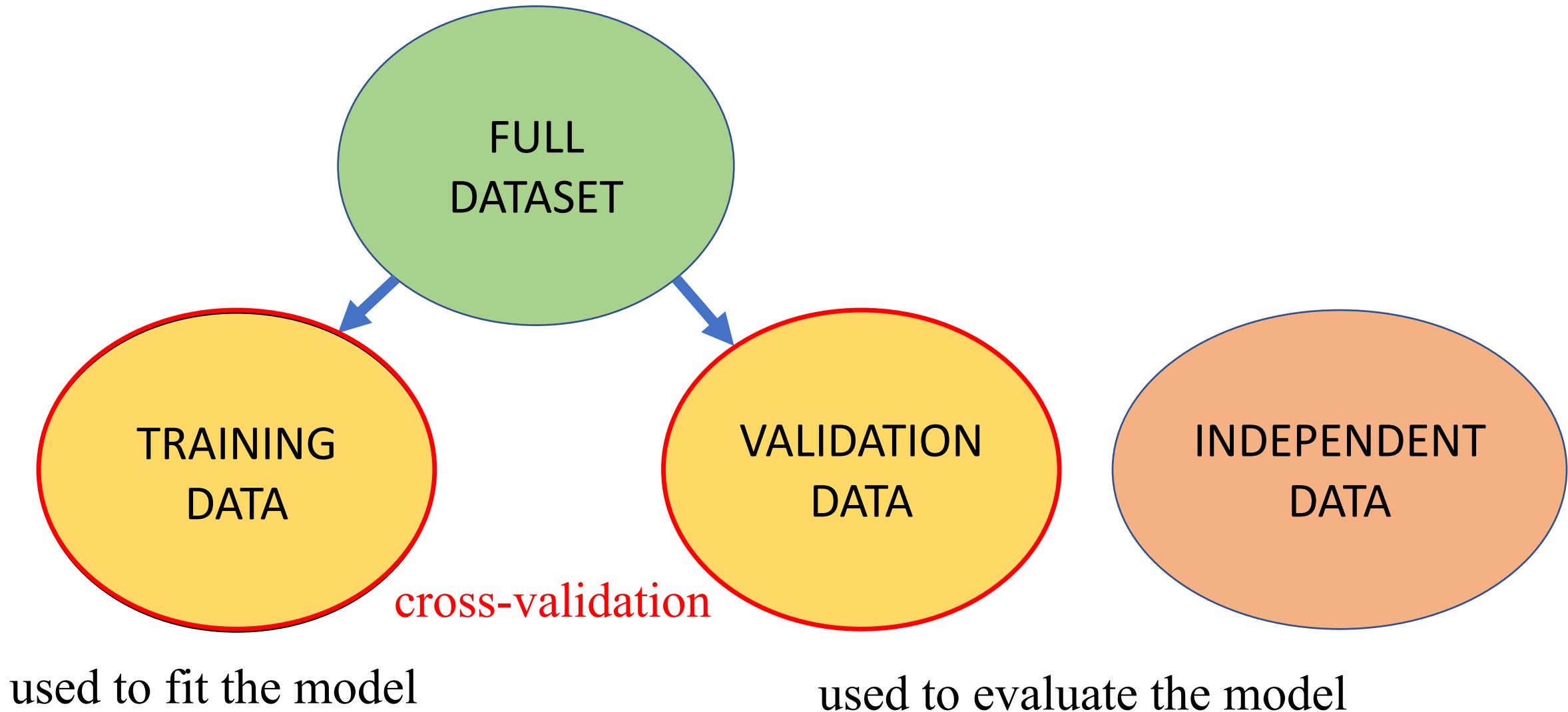
Popular SDM evaluation metrics

metric	threshold	range	high or low?	CV	caveats	R packages
AUC	independent	0 – 1	+	yes	cannot use to compare diff spp or extents	<i>dismo, ENMeval, SDMtune, ROCR</i>
pROC	independent	AUC ratio	+	yes	user-set acceptable level of omission error ($e = 100\%$ for AUC)	<i>pROC, kuenm, ntbox</i>
Continuous Boyce Index	independent	-1 – 1	+	yes		<i>ecospat, ENMeval</i>
omission rate	dependent	0 – 1	-	yes		<i>dismo, ENMeval</i>
TSS	dependent	-1 – 1	+	yes	cannot use to compare diff spp or extents	<i>SDMtune</i>
kappa	dependent	-1 – 1	+	yes	cannot use to compare diff spp or extents	<i>dismo</i>
AICc	independent	relative	-	no	cannot evaluate transferability	<i>ENMeval, SDMtune</i>

Model evaluation strategy

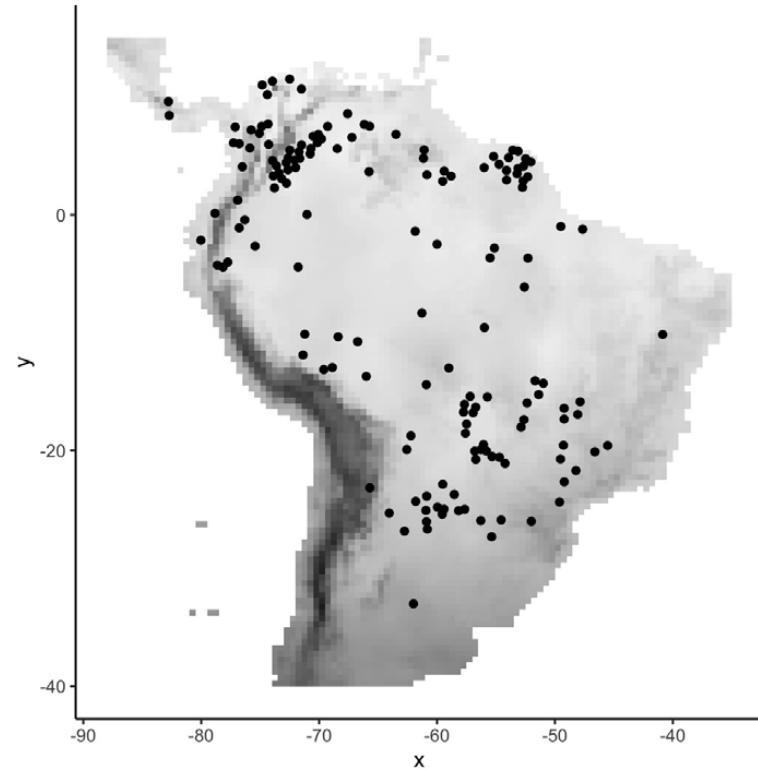
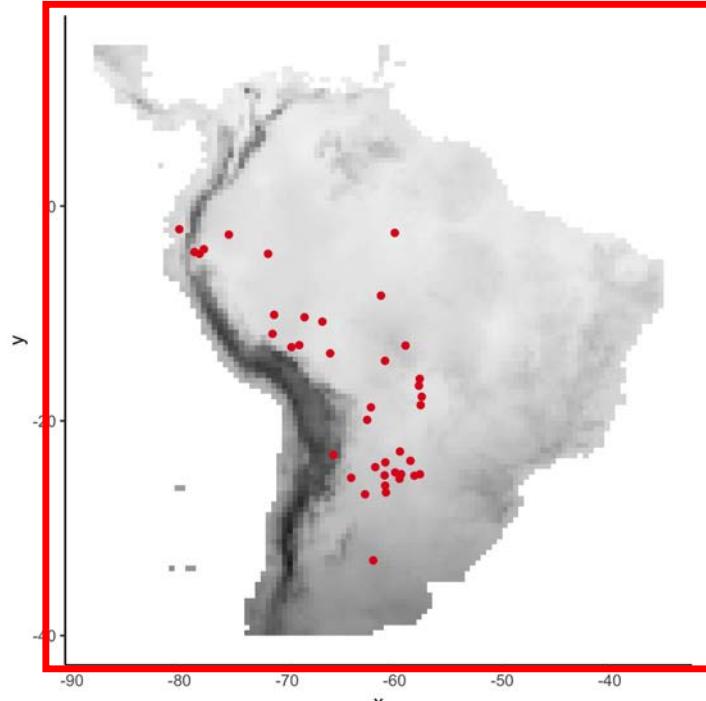
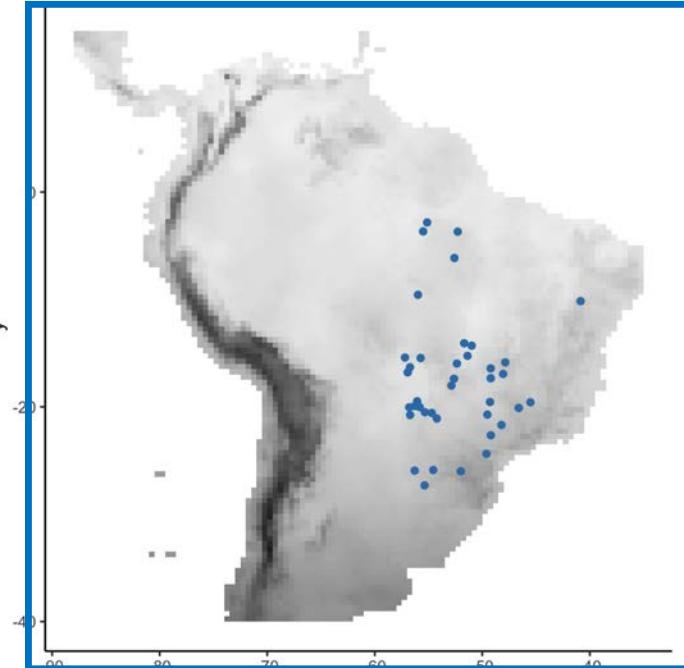
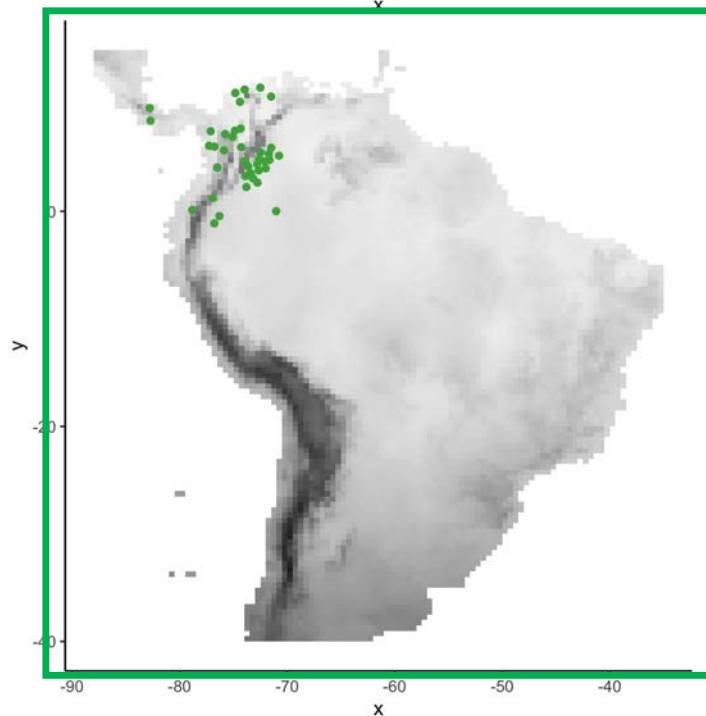
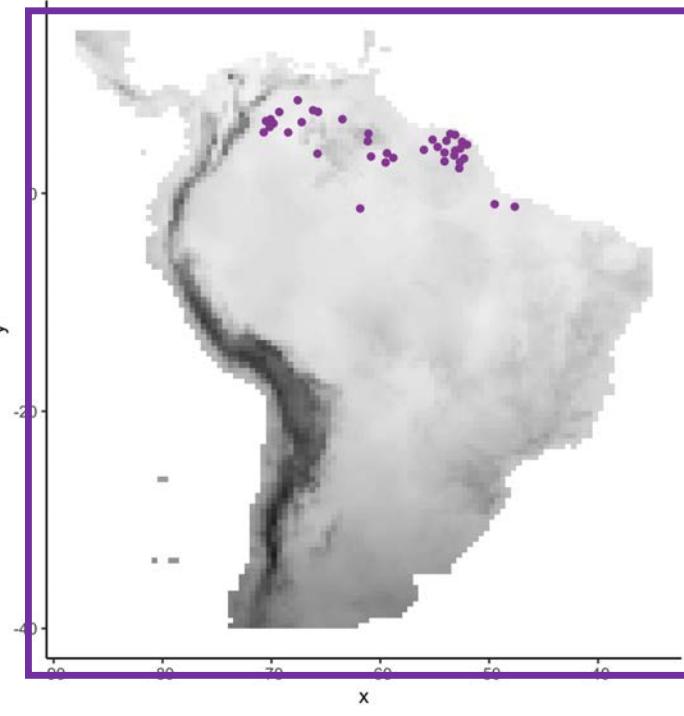
- each model should be able to accurately predict the input data
- but can each model also accurately predict new data?
- if we have independent data, we can evaluate each model on it
- if not, we can evaluate each model on subsets of itself

Data for modeling: terminology



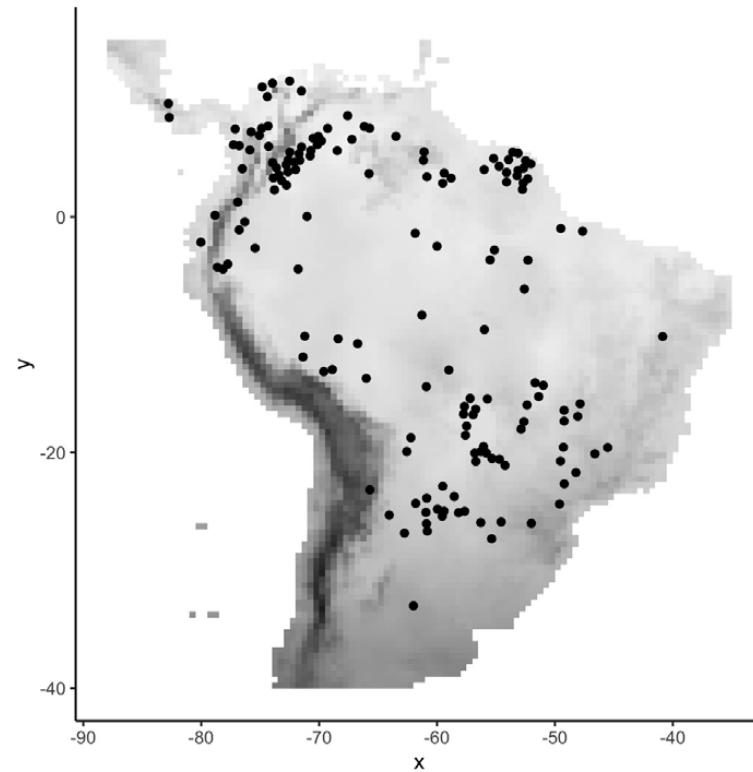
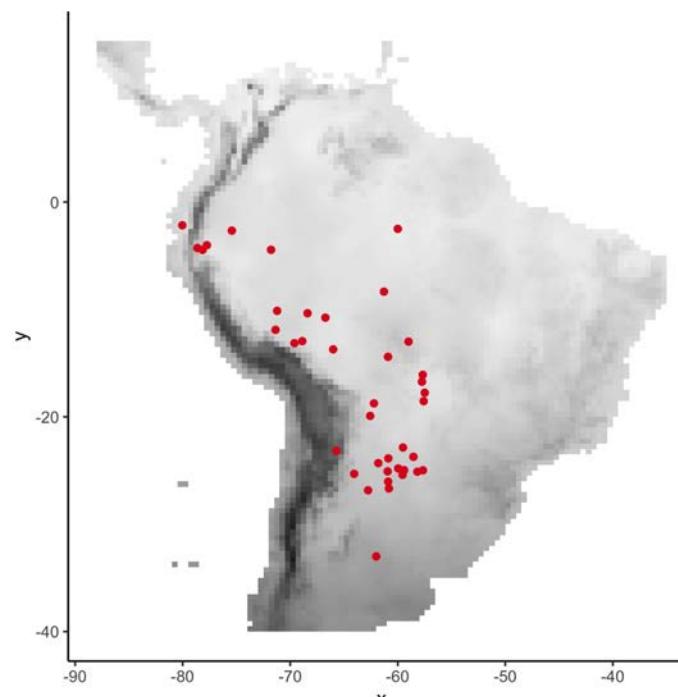
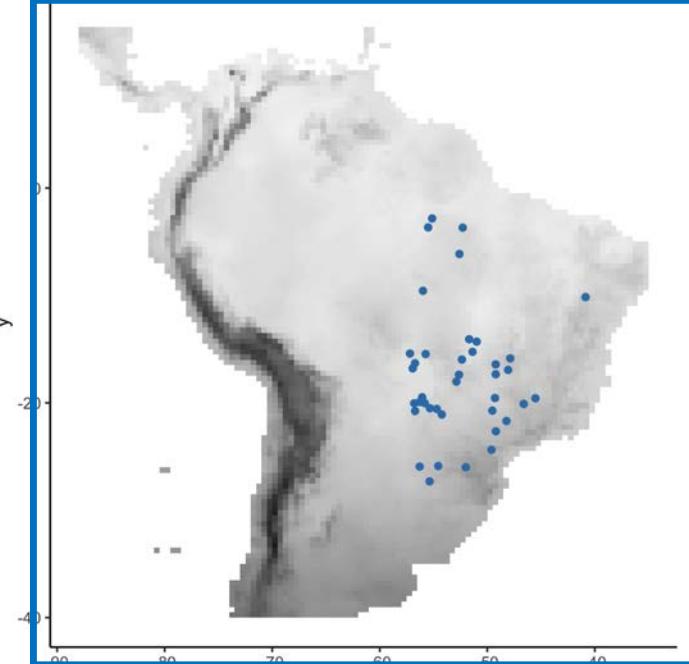
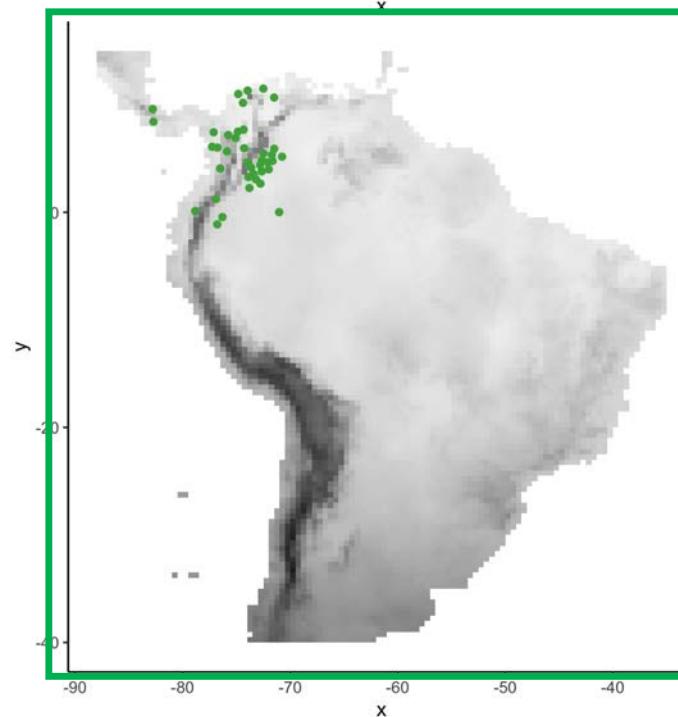
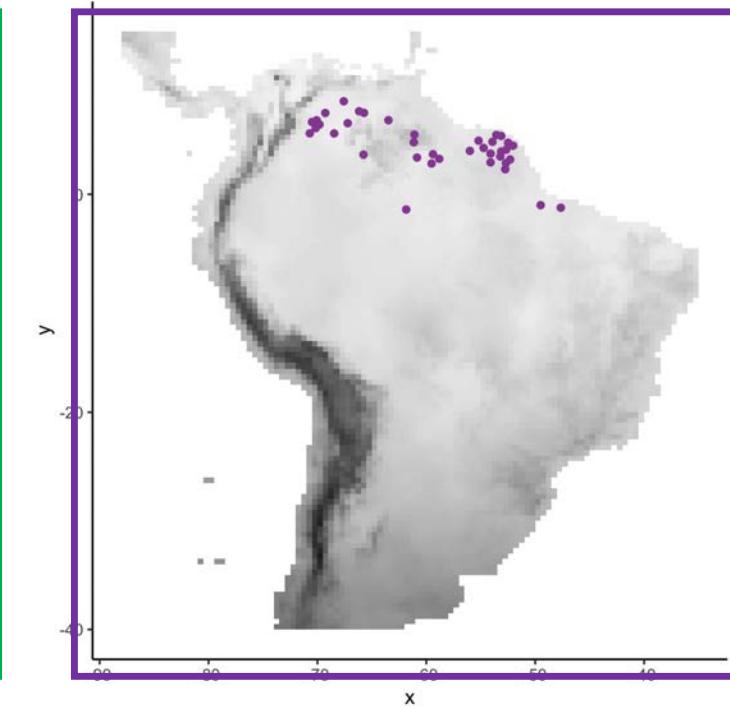
Cross validation

1. Split the data into k groups
(a.k.a. subsets, partitions)



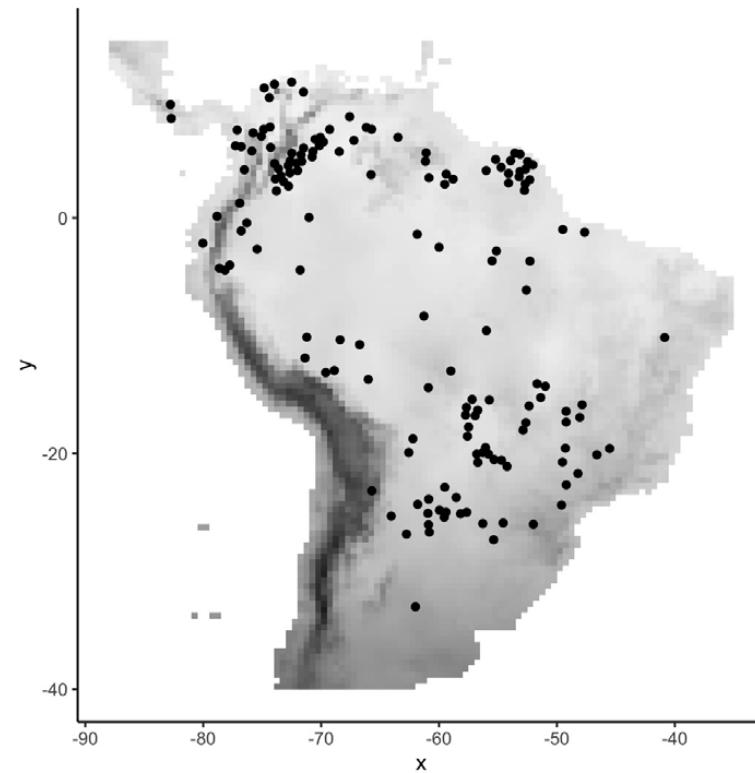
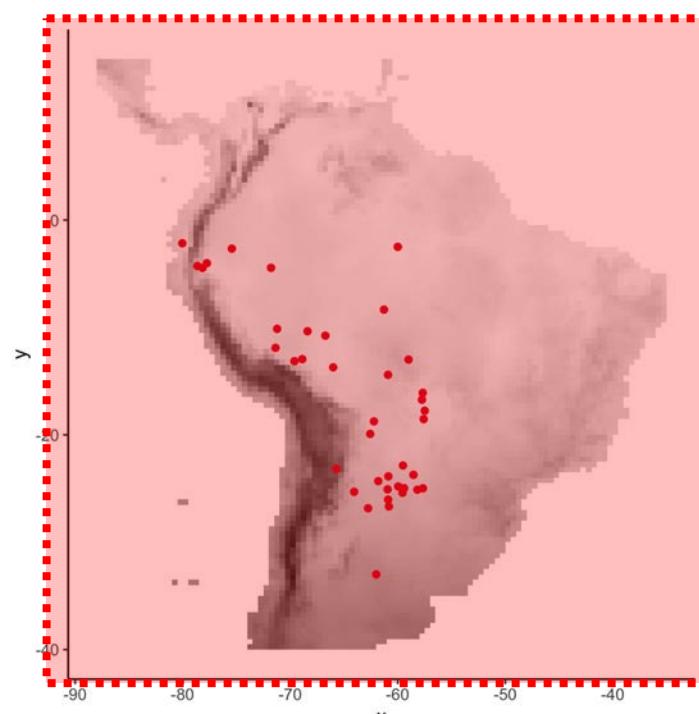
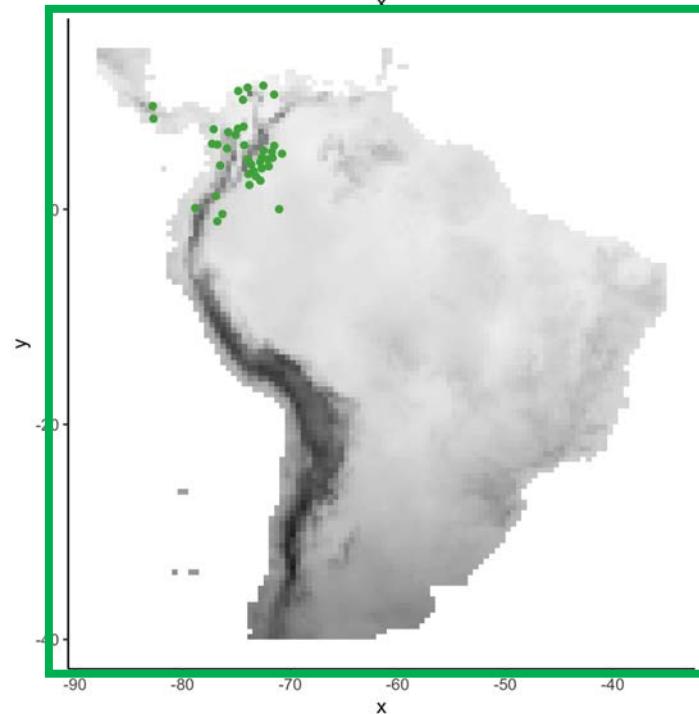
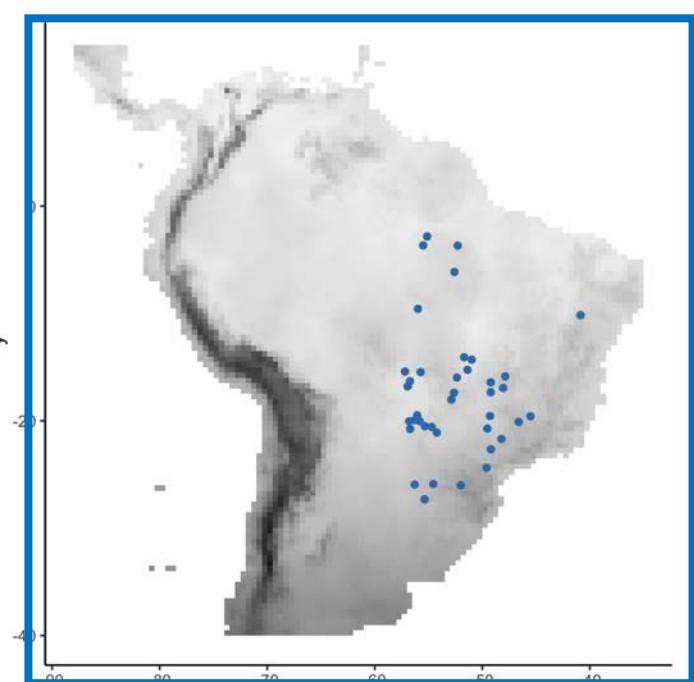
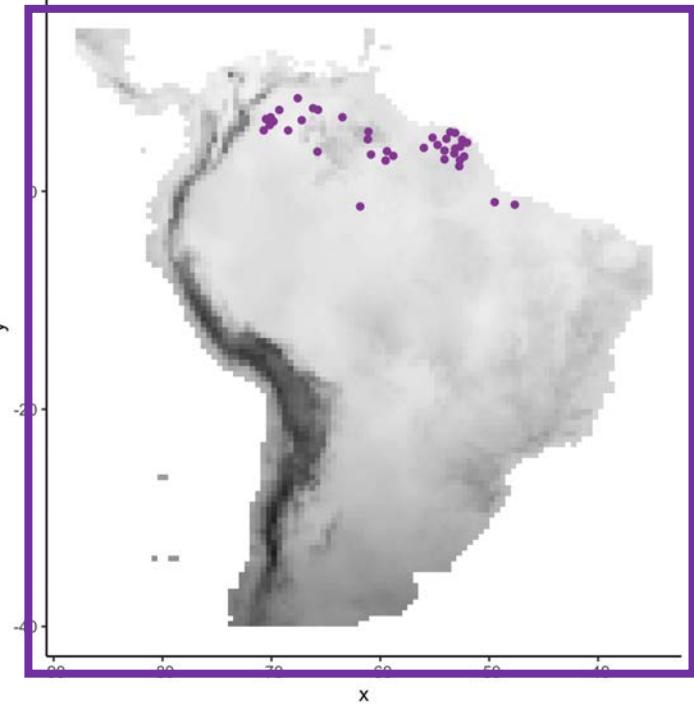
Cross validation

2. Train the model on $k - 1$ subsets



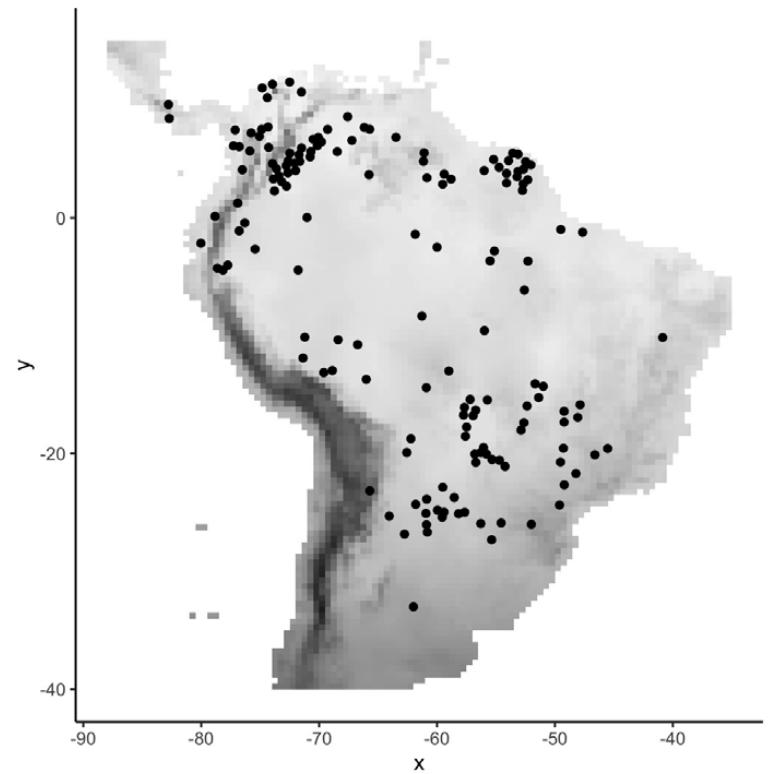
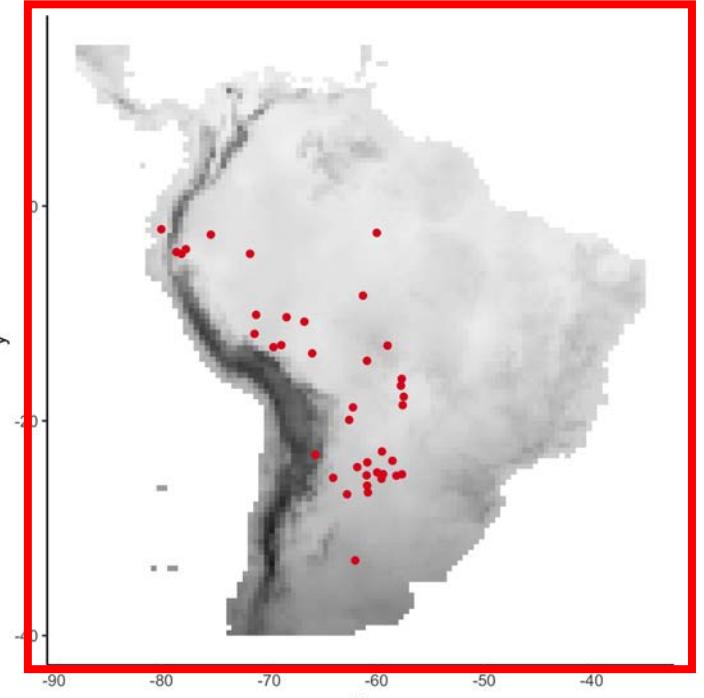
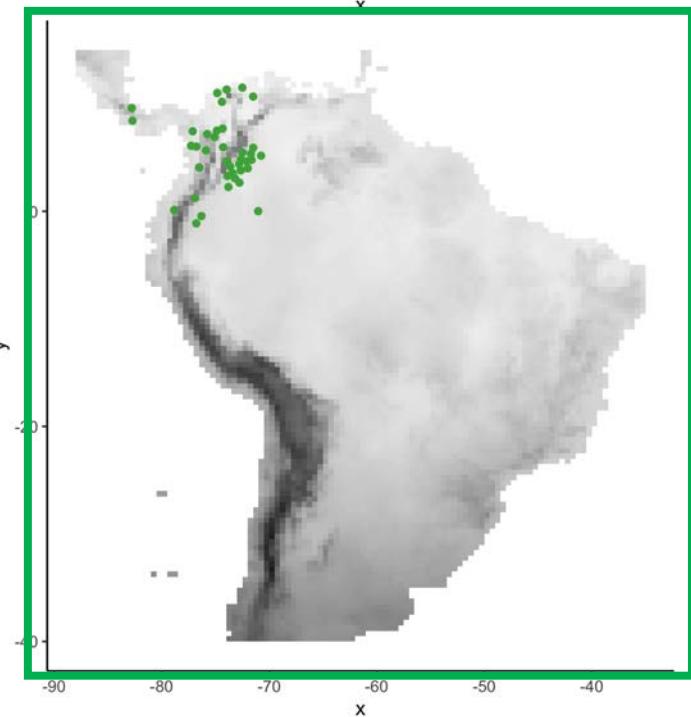
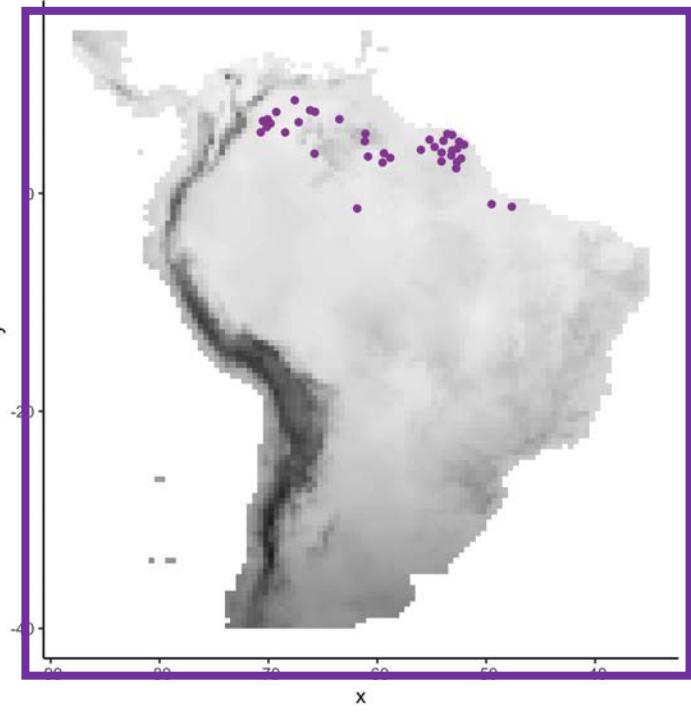
Cross validation

3. Evaluate the model on subset k (calculate an evaluation statistic)



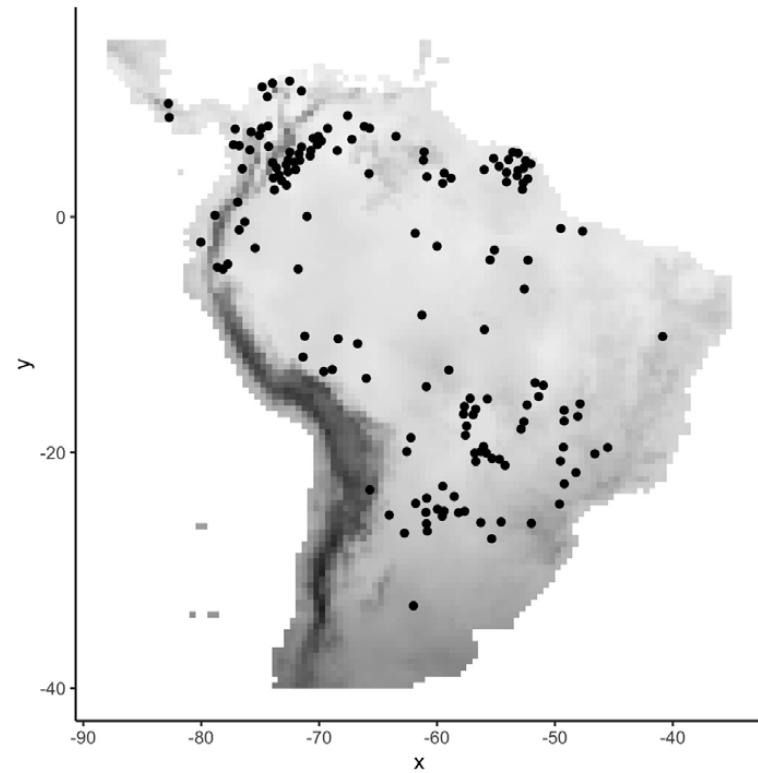
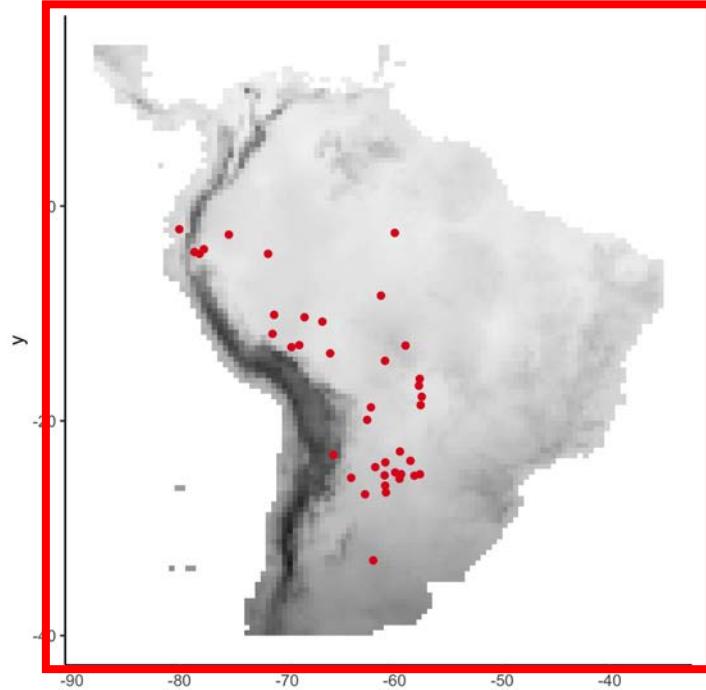
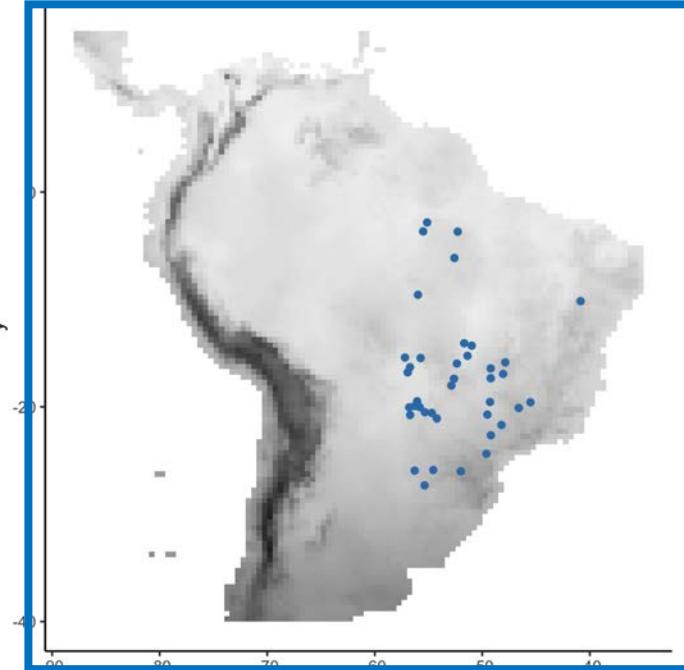
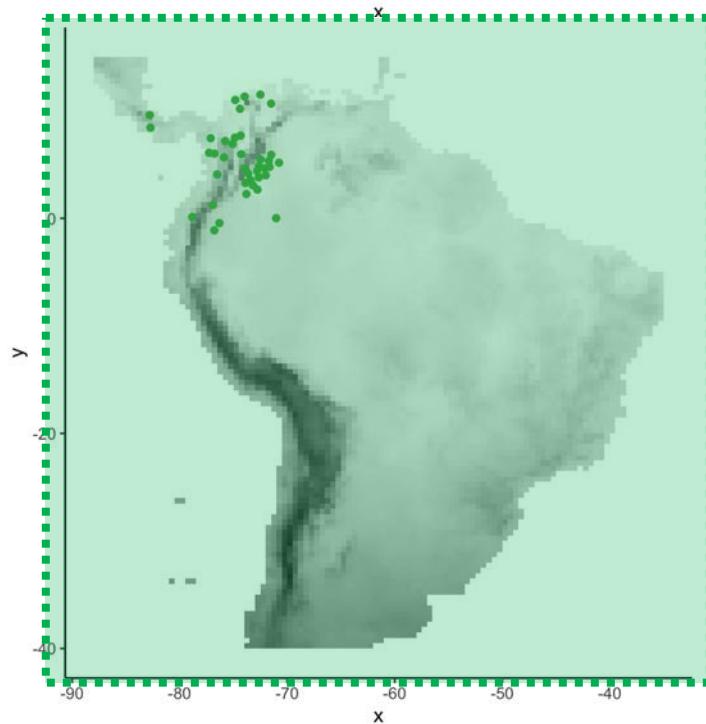
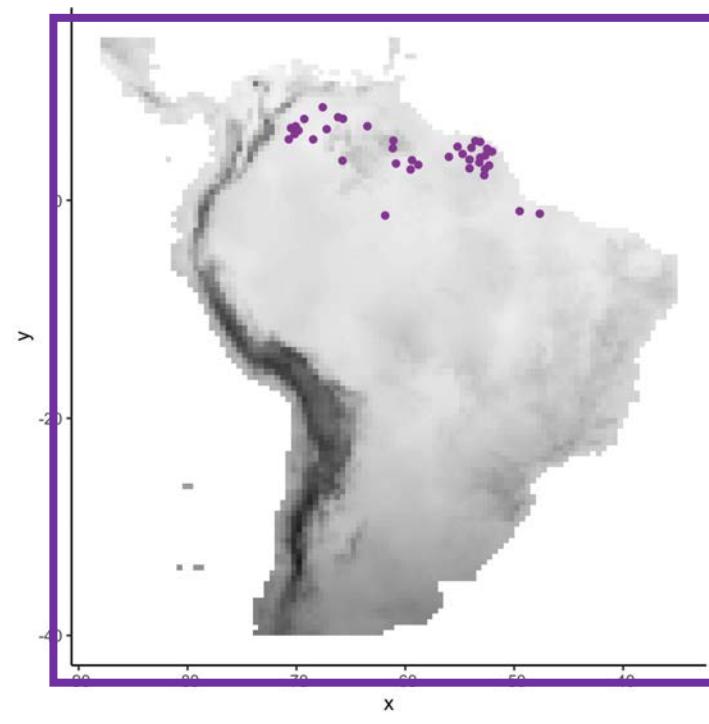
Cross validation

4. Repeat for all k



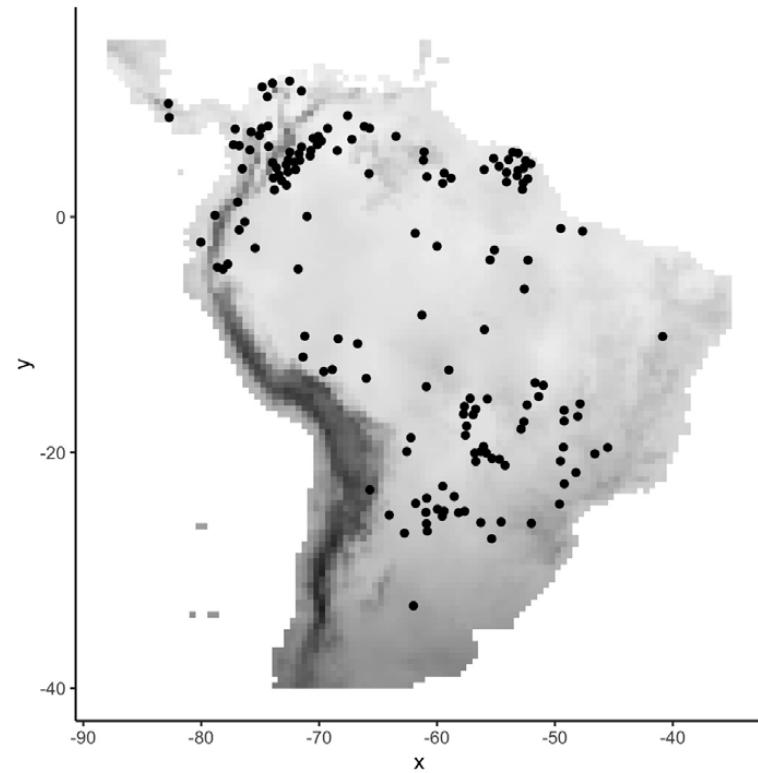
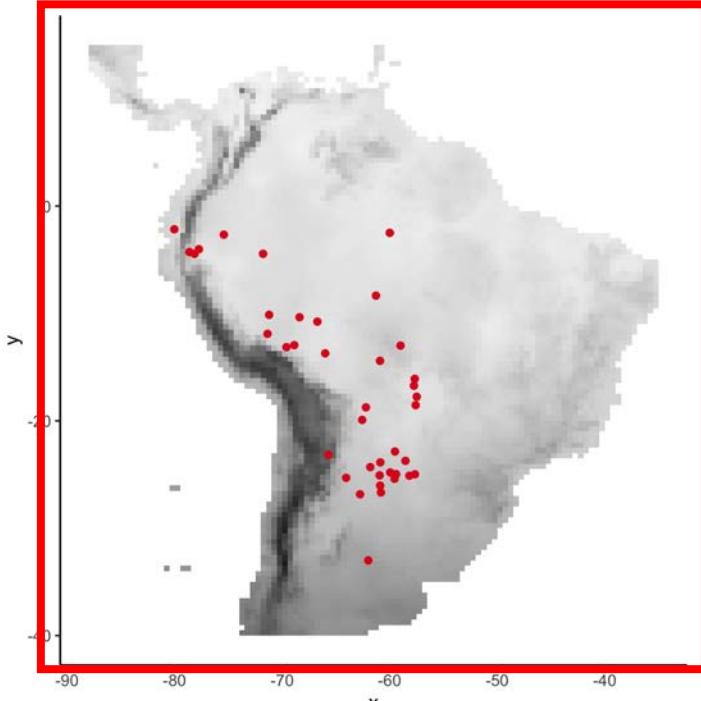
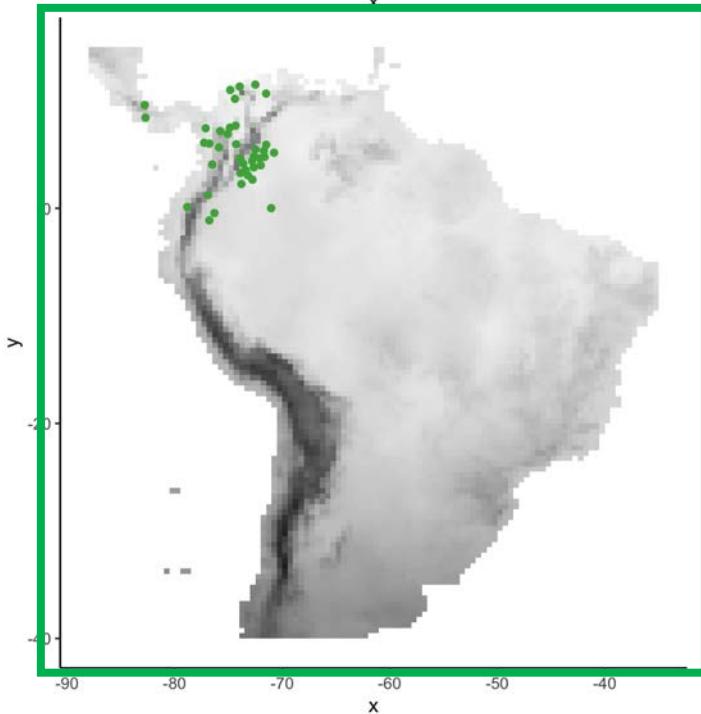
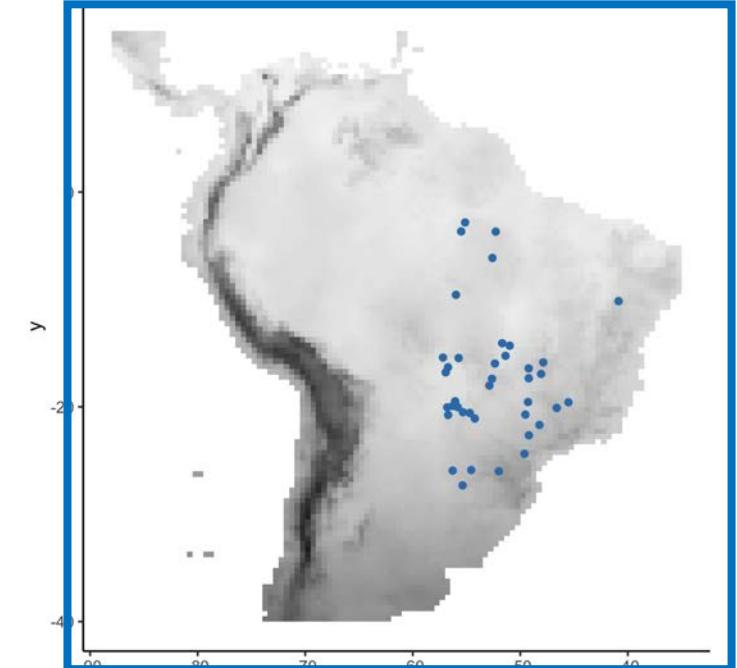
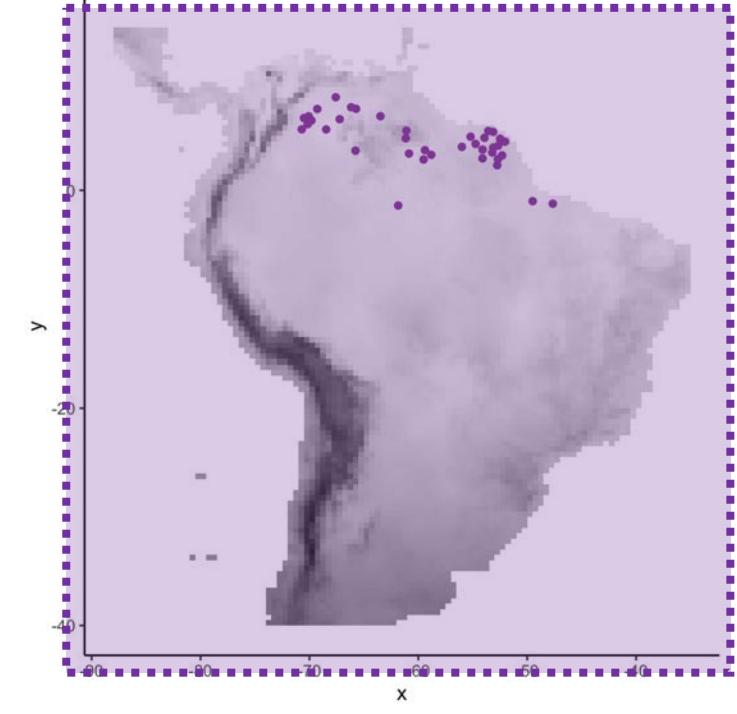
Cross validation

4. Repeat for all k



Cross validation

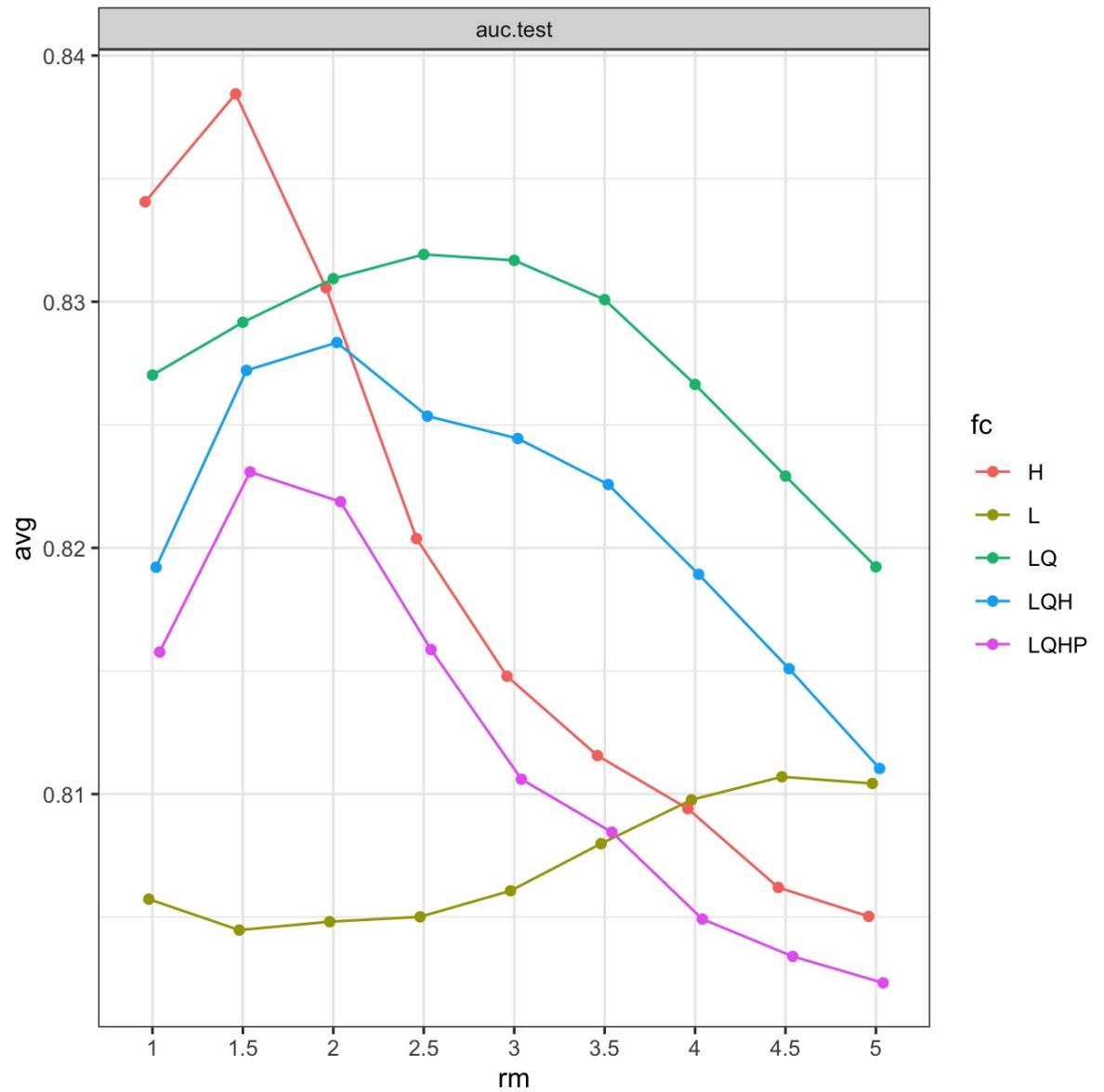
4. Repeat for all k



Cross validation

5. Take summary statistics (mean, sd, etc.) on the subset evaluations

Finally, compare the model evaluations to determine the parameter settings for optimal complexity

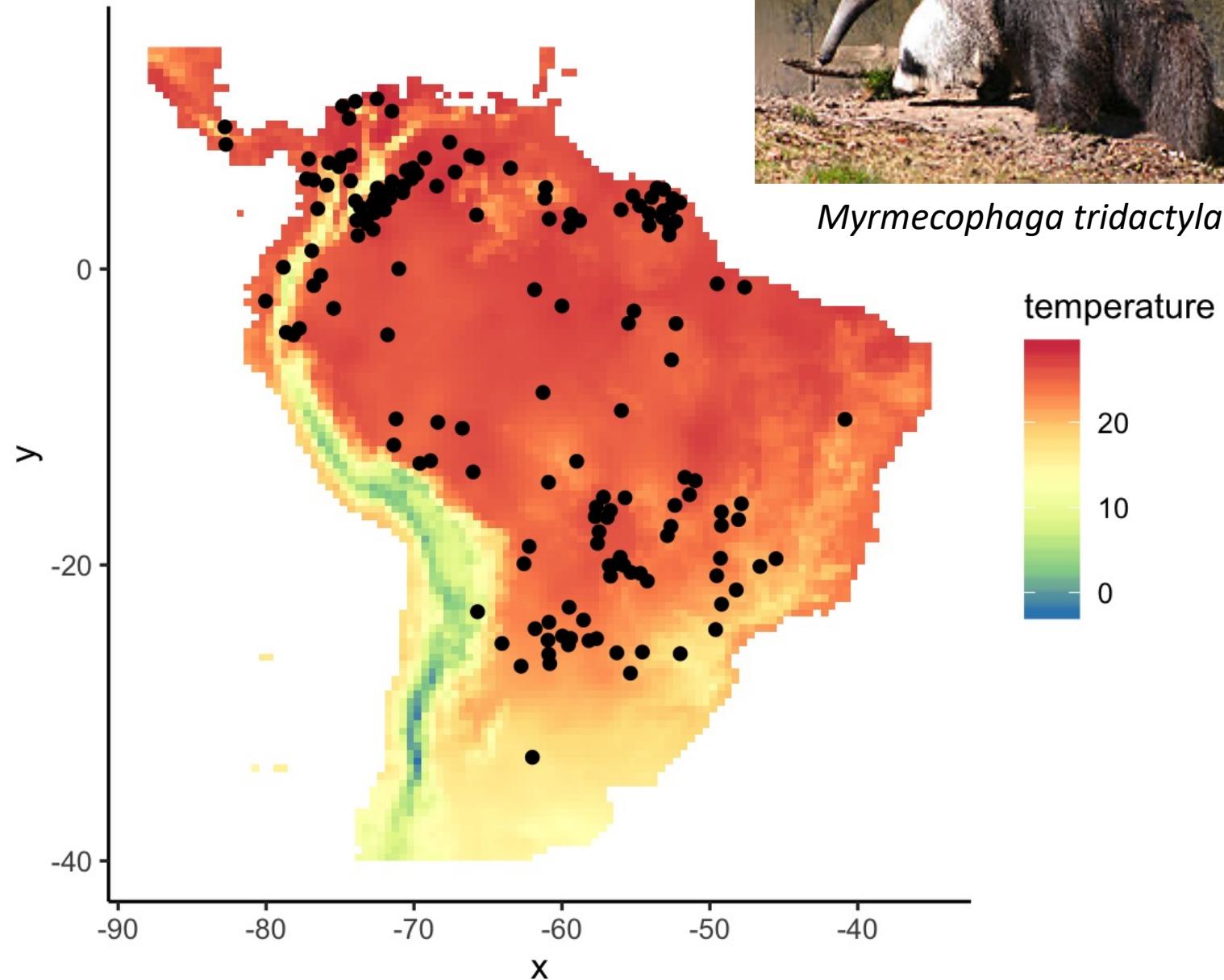


Model tuning

- we can implement cross validation on a suite of models with varying complexity
- each model will have associated performance metrics
- we can then conduct model selection to choose an “optimal” model

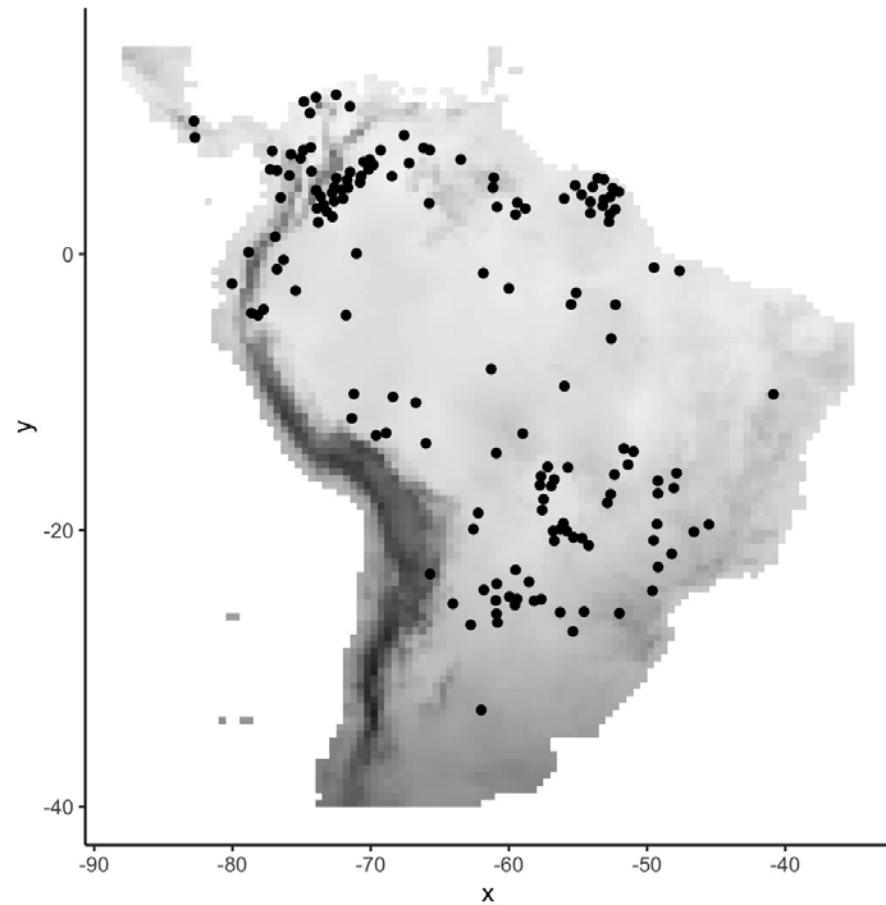
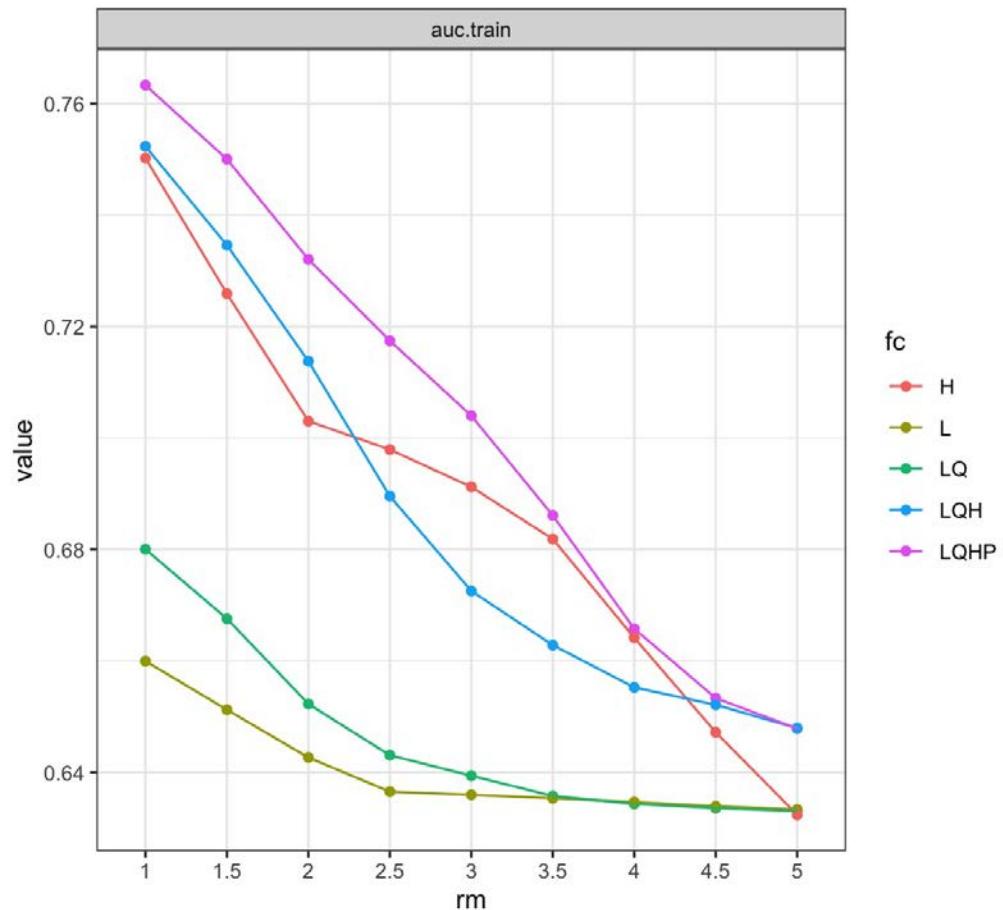
Example: Giant Anteater

- downloaded from GBIF with R package spocc
- initially, $n = 400$
- after processing (geographic and spatial filtering), $n = 155$



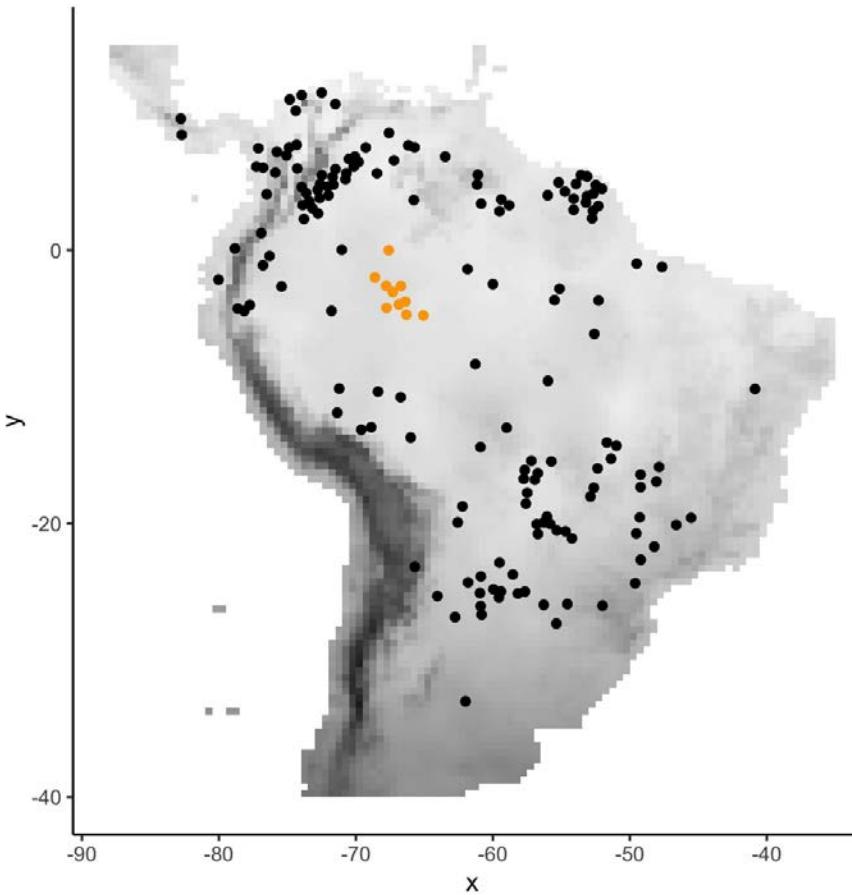
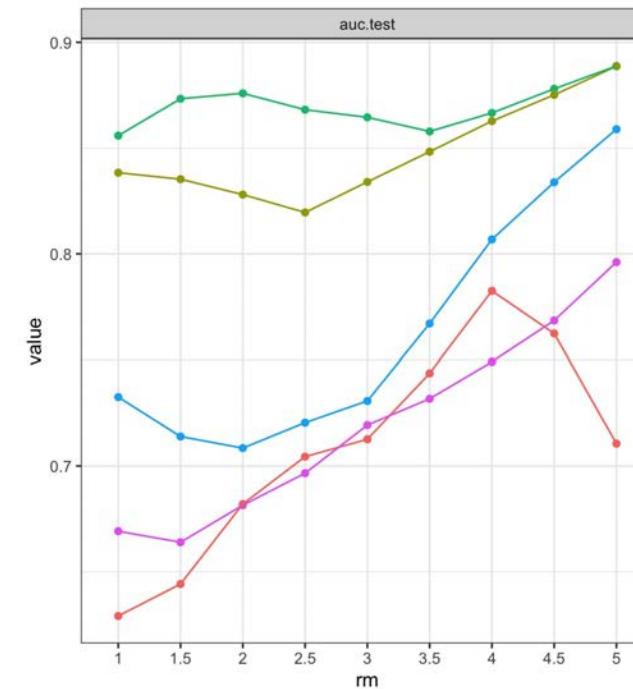
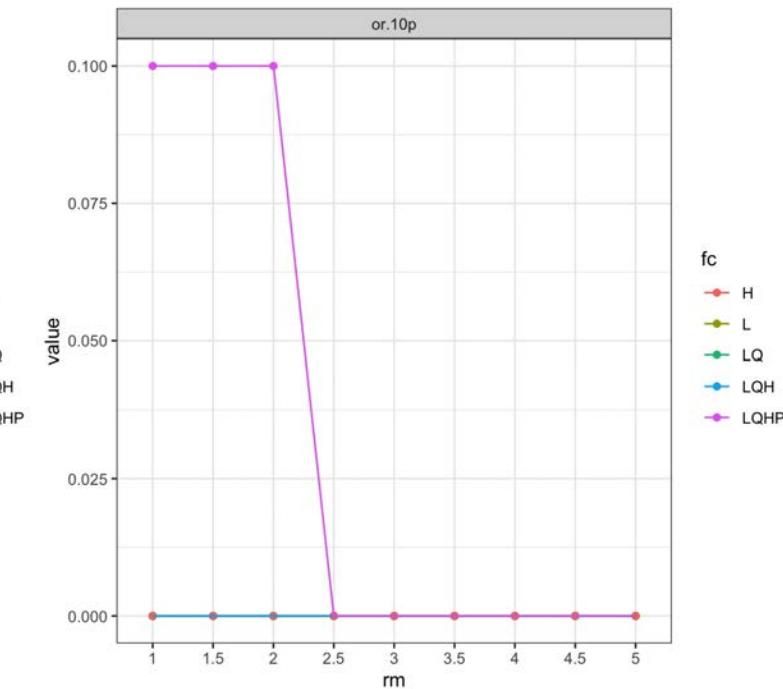
How to evaluate models when tuning?

- we could ask how well each model predicts the input data (training data)



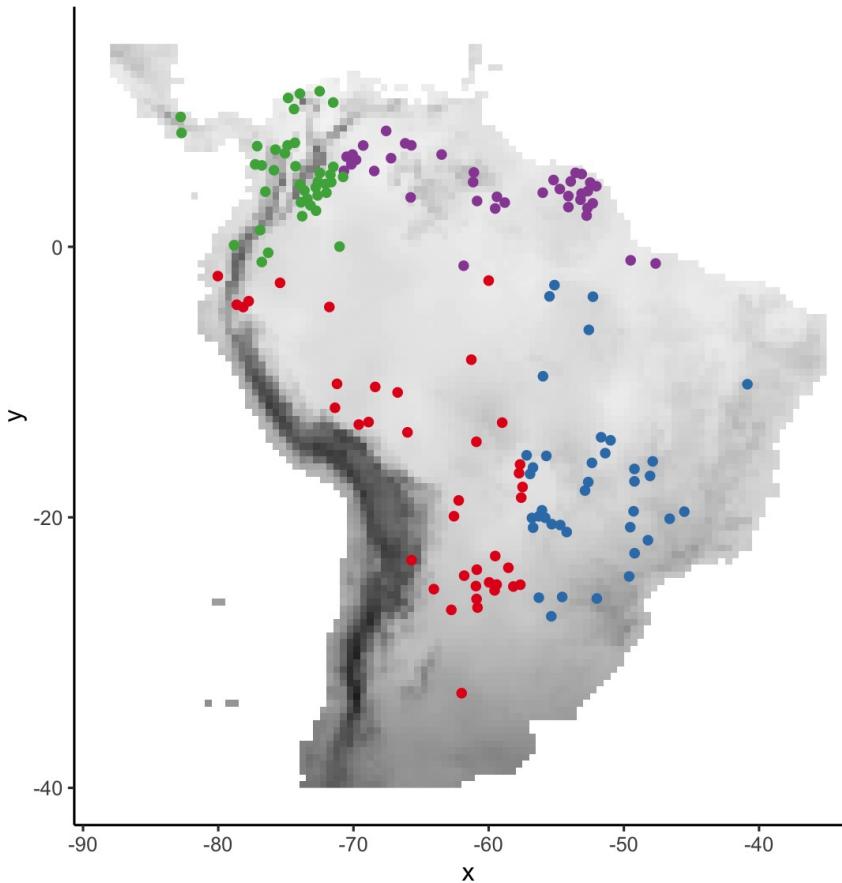
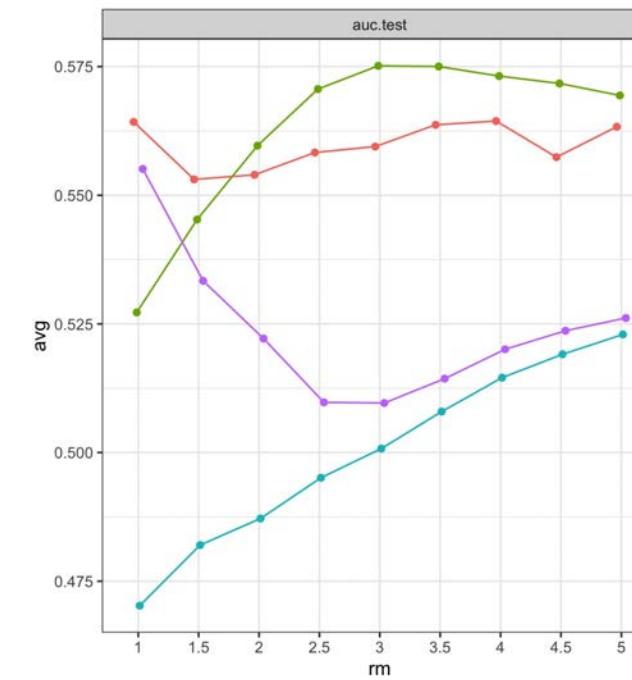
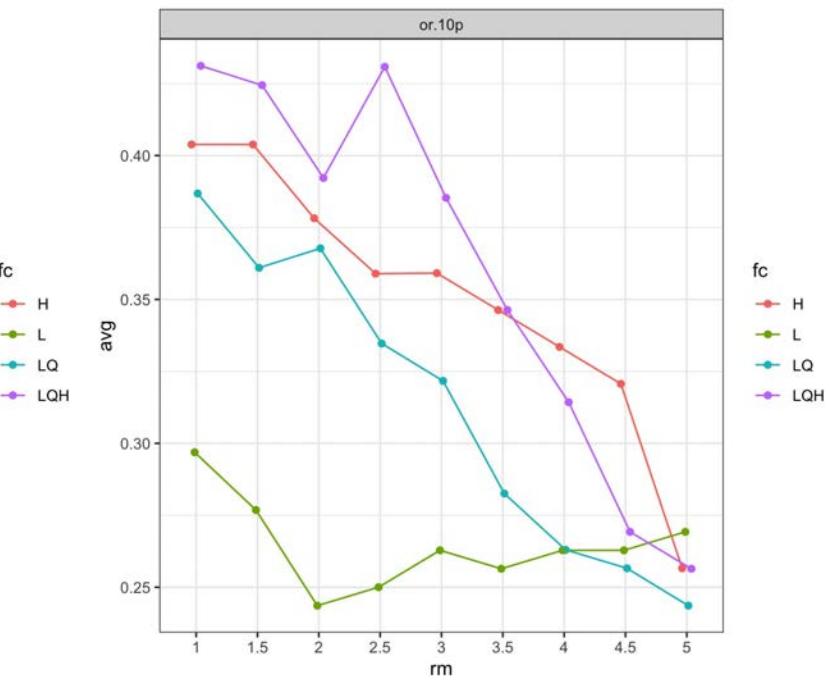
How to evaluate models when tuning?

- we could ask how well each model predicts independent data



How to evaluate models when tuning?

- we could ask how well each model predicts holdout data on average (testing data)



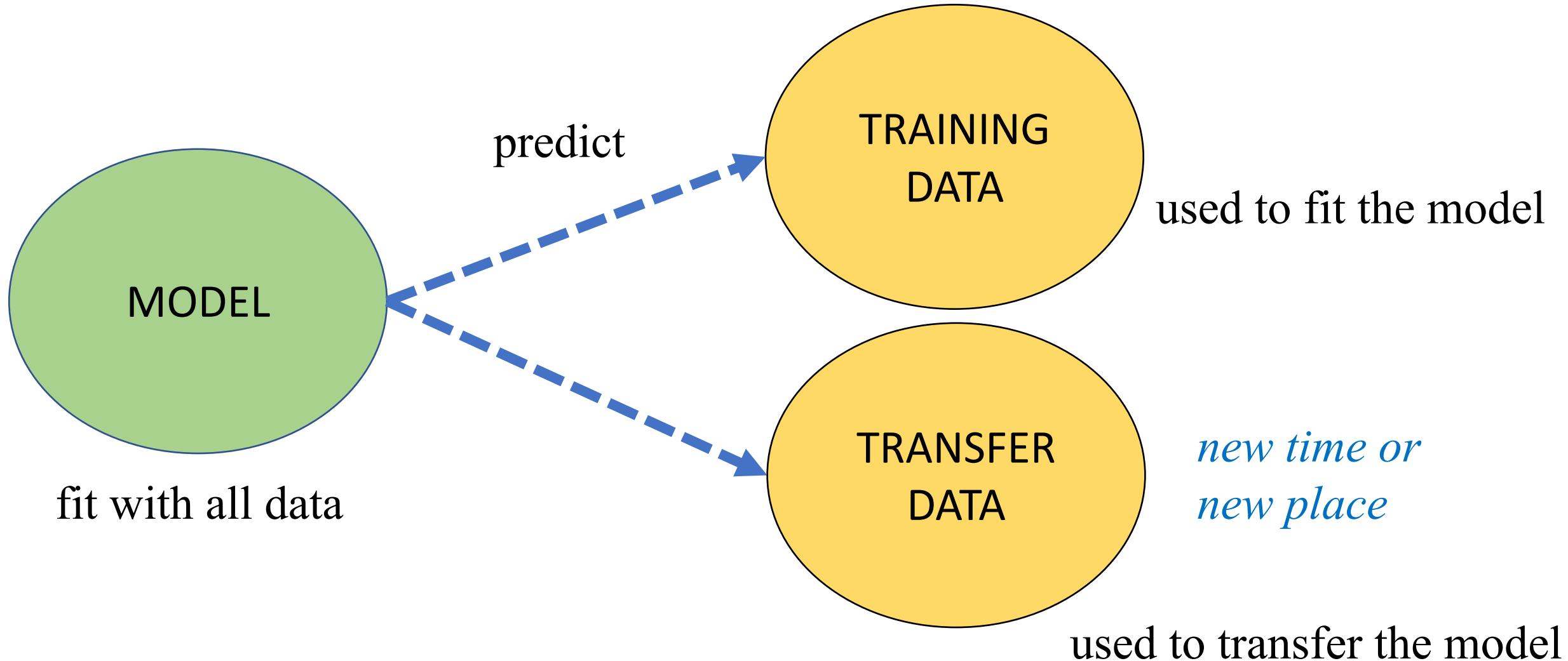
Ideal data subset for cross validation

- even number of records across subsets
 - not always feasible when number of records is low
- even sampling across environment
 - not always feasible when records are absent from certain environments
 - not desirable when the goal is extrapolation

Purpose of cross validation evaluation

- ability to predict the conditions in your data (interpolation)
- ability to transfer to new conditions (extrapolation)
- need to ask yourself: what do you want your model to do?
- then subset your data to make the model evaluations rate this ability

Data for model transfer: terminology

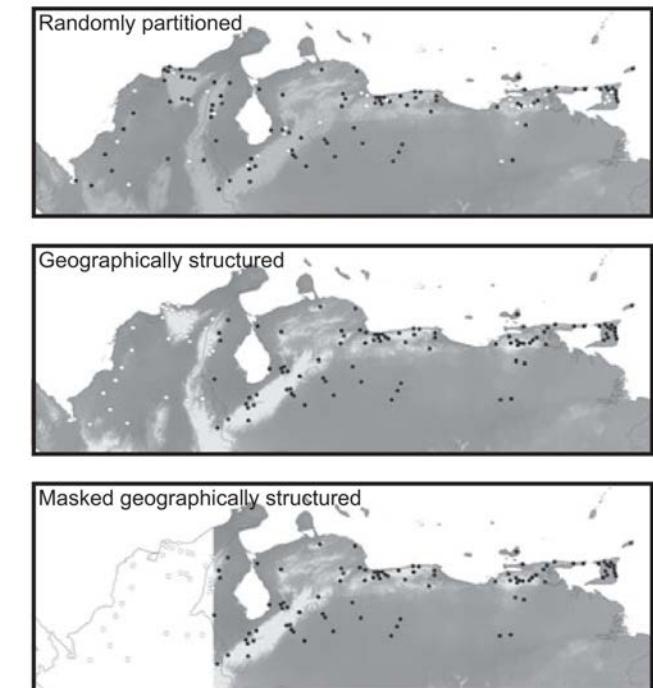


Block vs. non-block subsetting

- block subsetting: partitioning the data with some underlying structure
- usually results in lower performance than random CV
- leads to better evaluations of transferability
- with most block subsets, cross validation should include background data as well

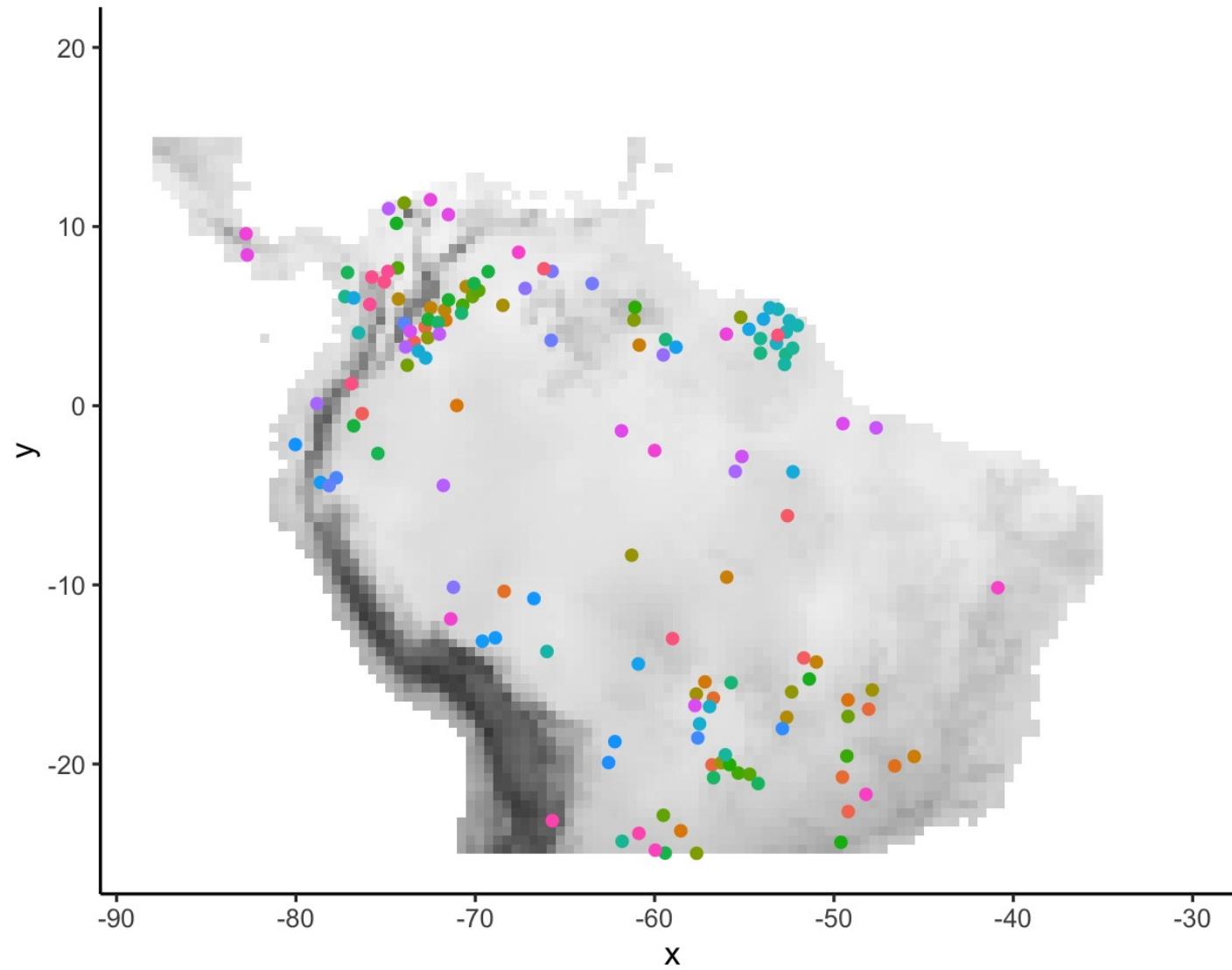
Dependence structure	Parametric solution	Blocking	Blocking illustration
Spatial	Spatial models (e.g.CAR, INLA, GWR)	Spatial	
Temporal	Time-series models (e.g.ARIMA)	Temporal	
Grouping	Mixed effect models (e.g. GLMM)	Group	
Hierarchical / Phylogenetic	Phylogenetic models (e.g. PGLS)	Hierarchical	

Roberts et al. 2017

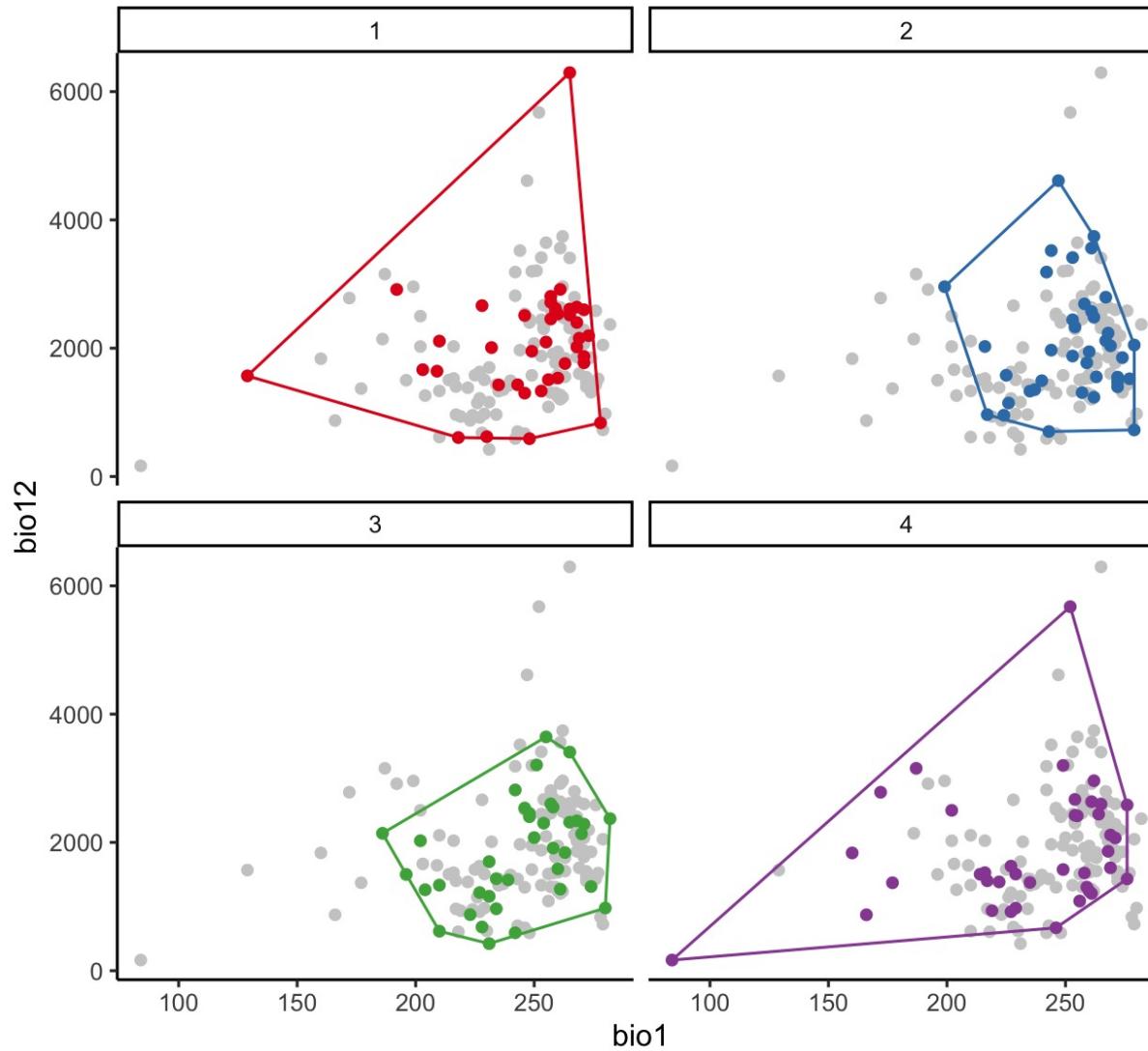
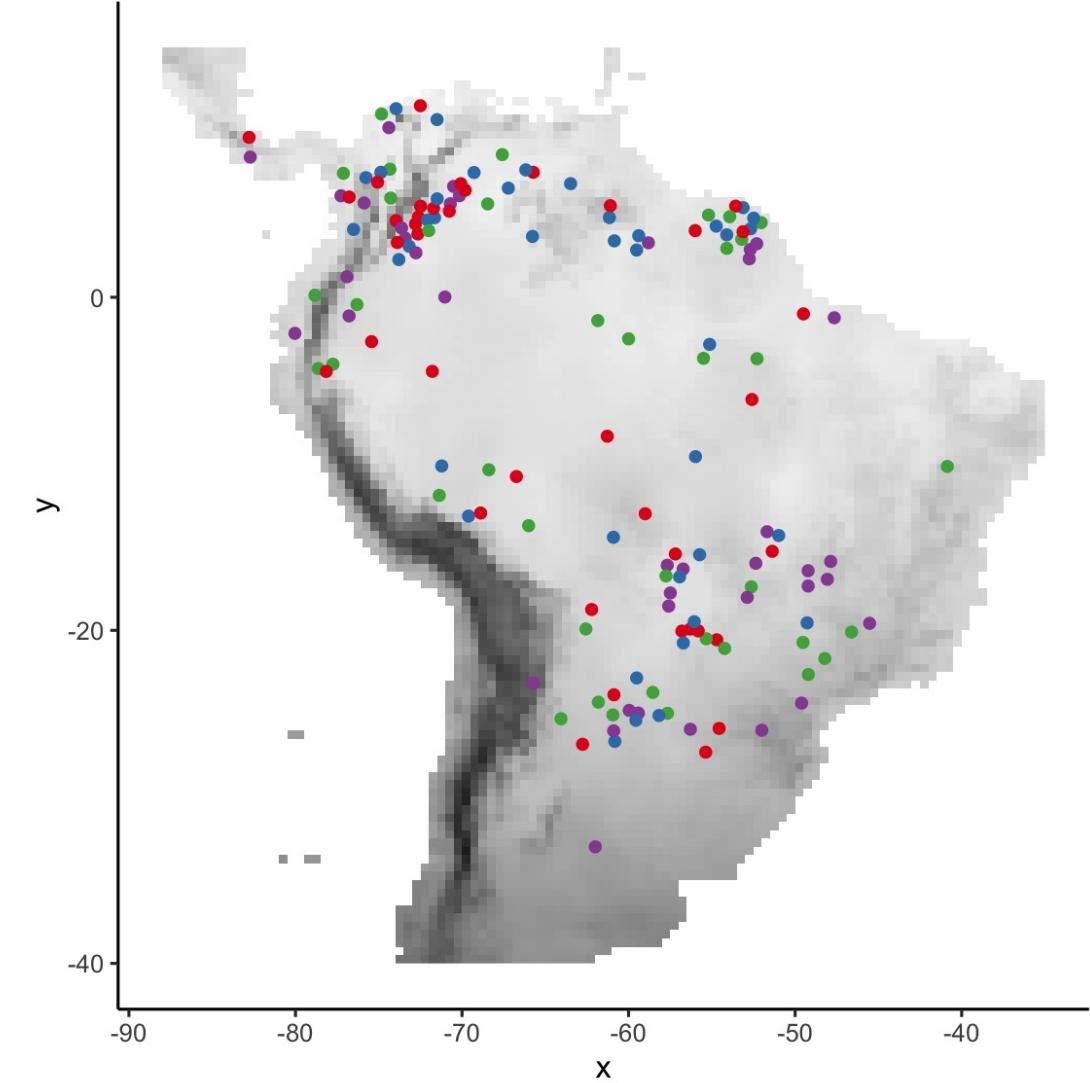


Radosavljevic & Anderson 2014

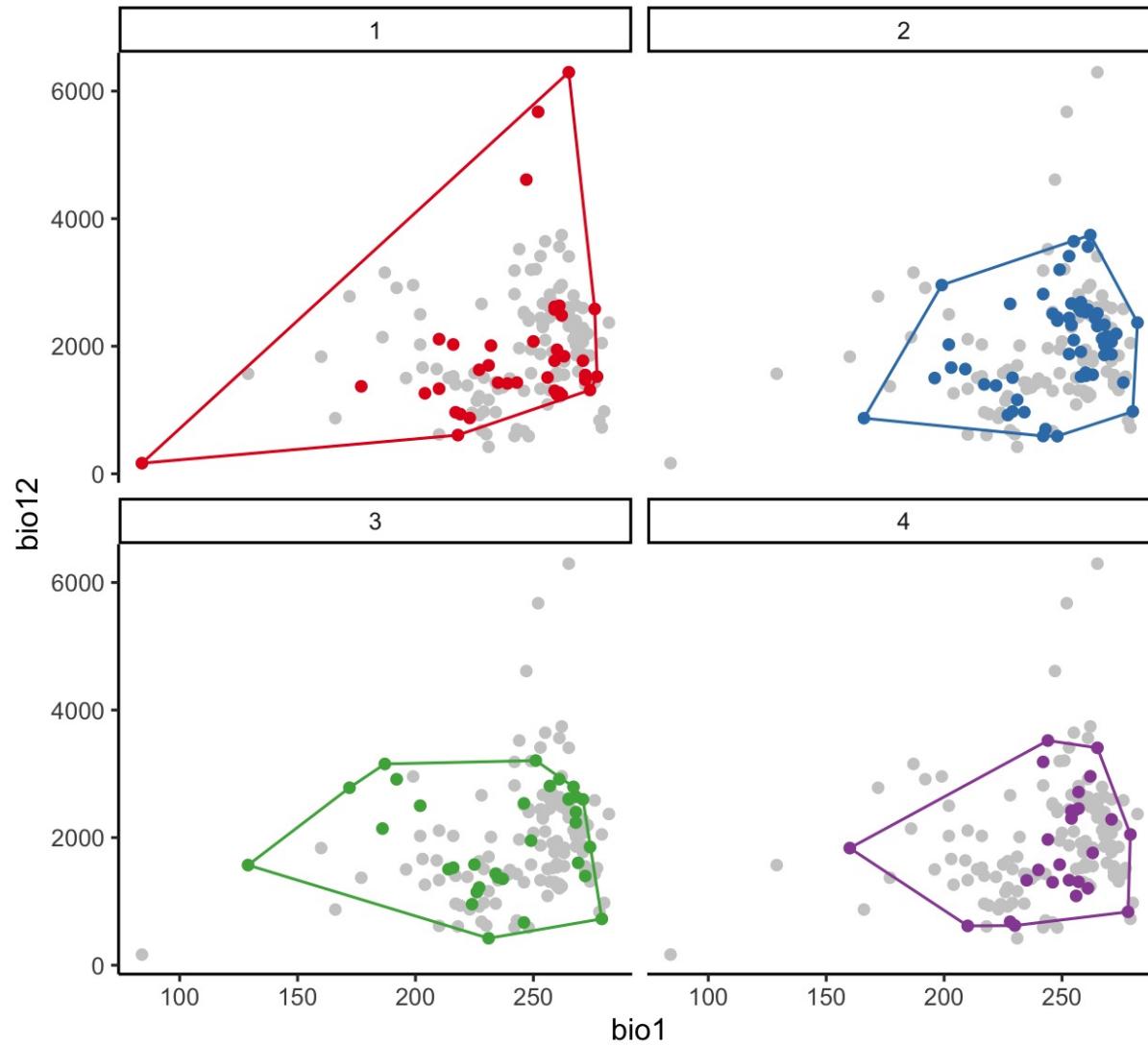
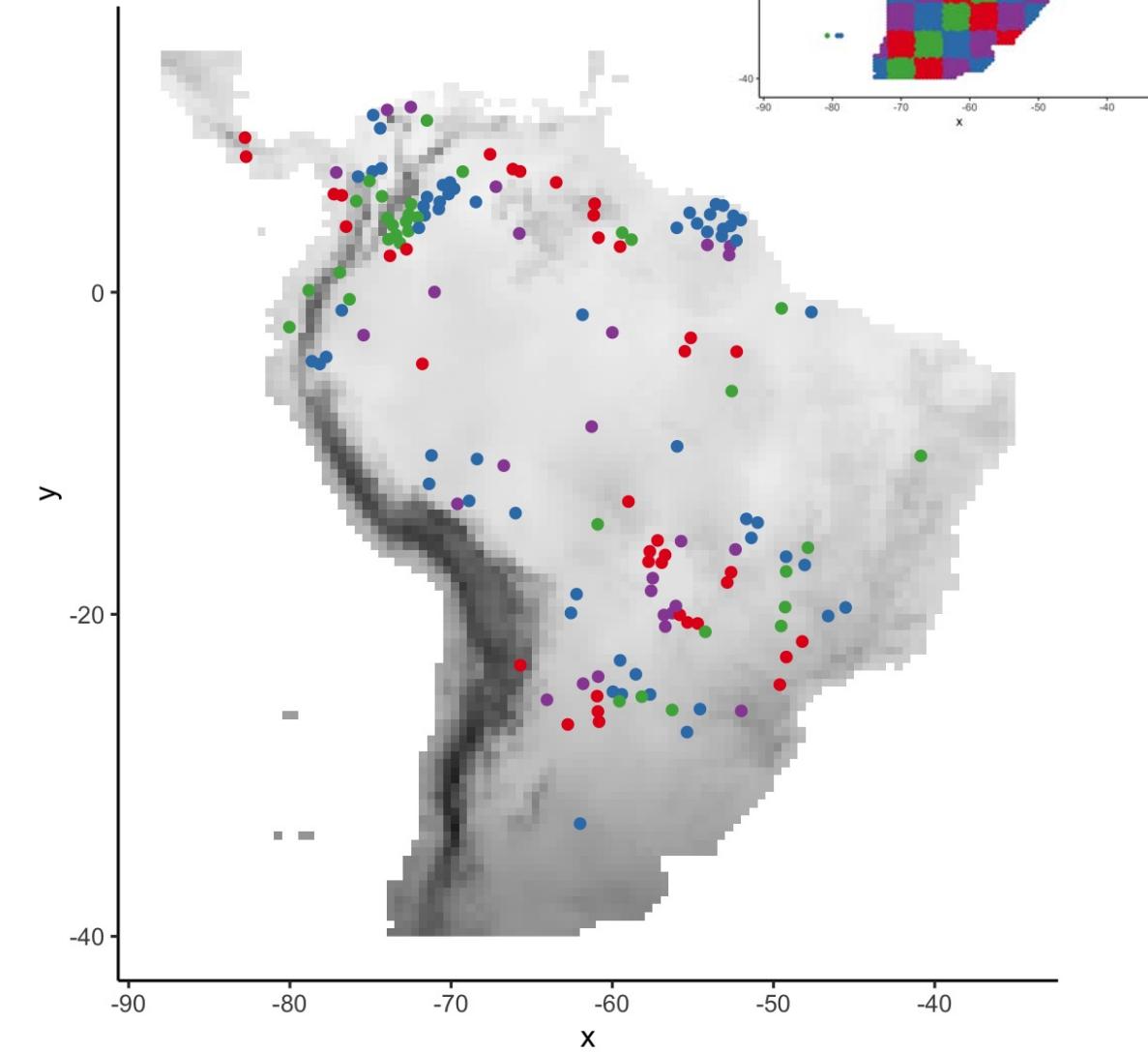
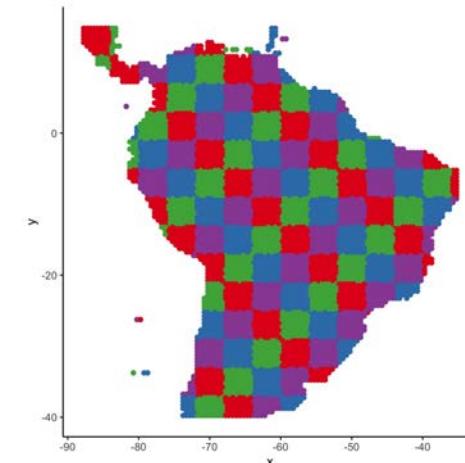
Ways to subset: leave-one-out (jackknife)



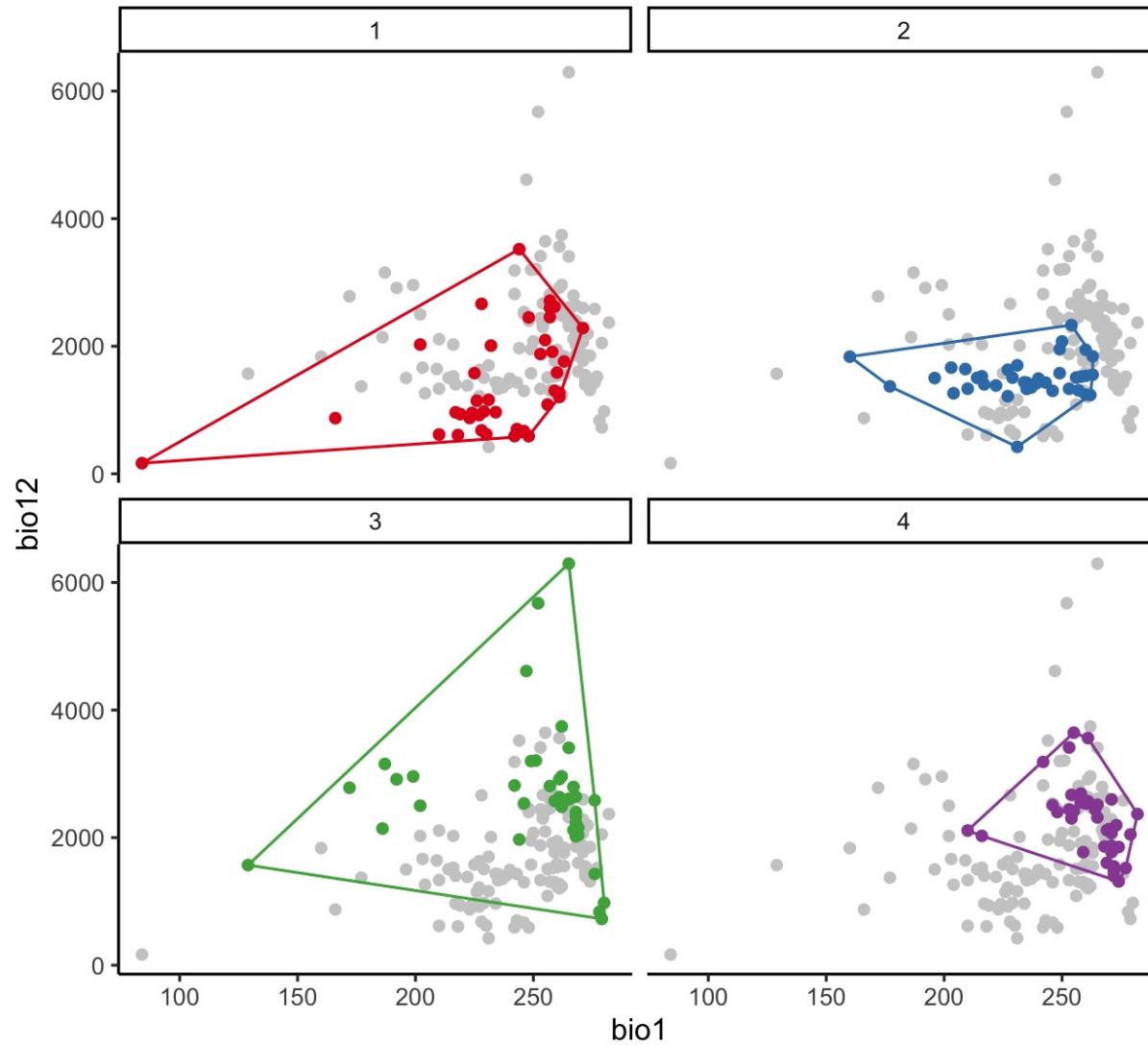
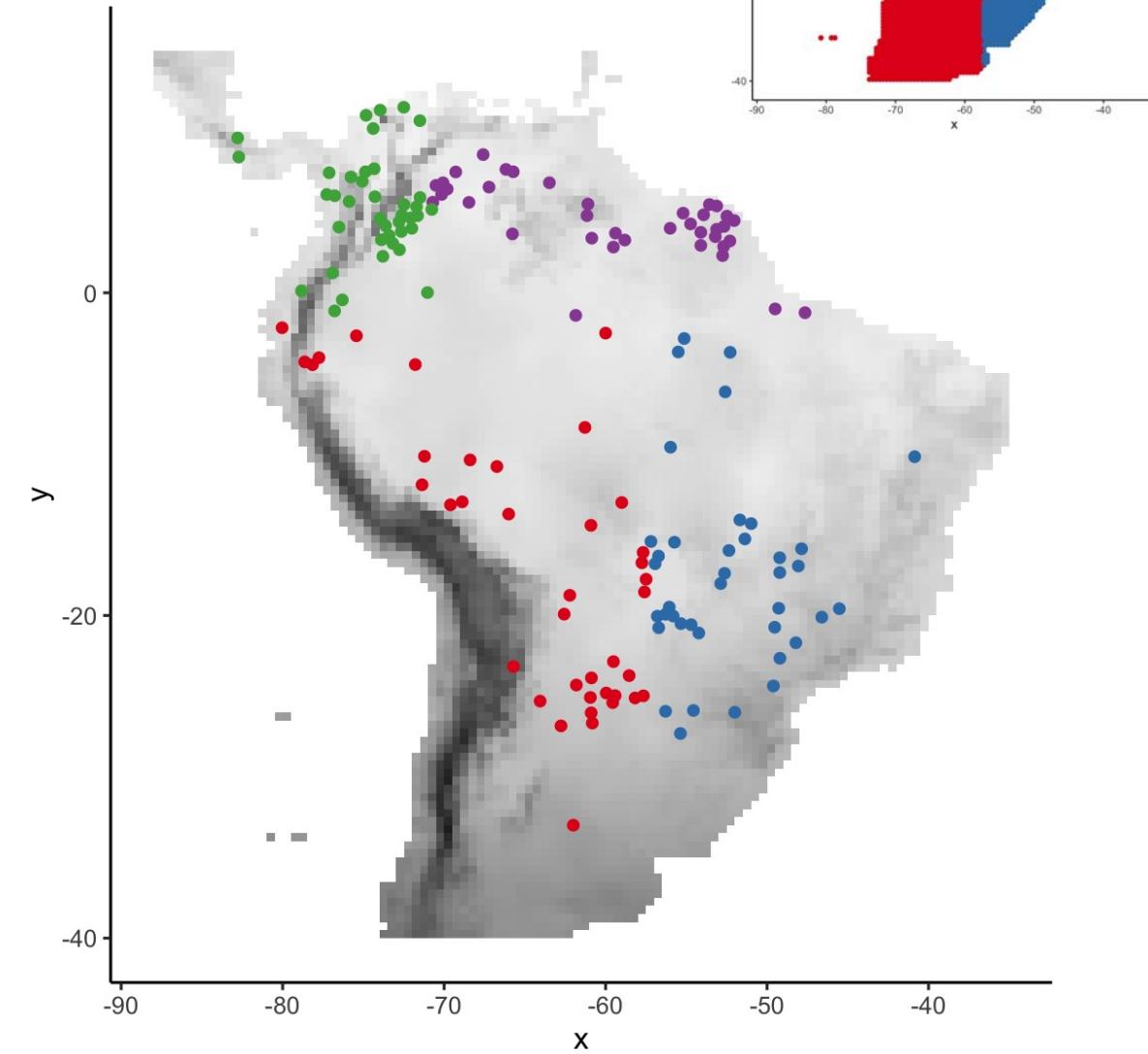
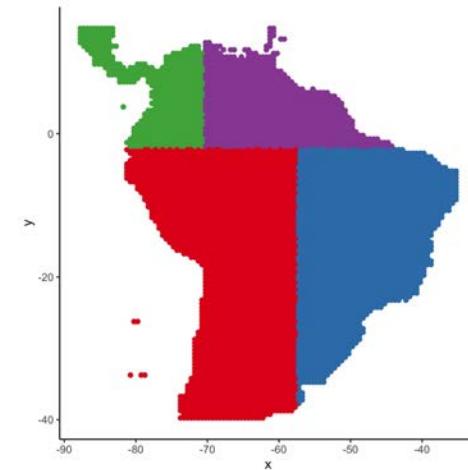
Ways to subset: random



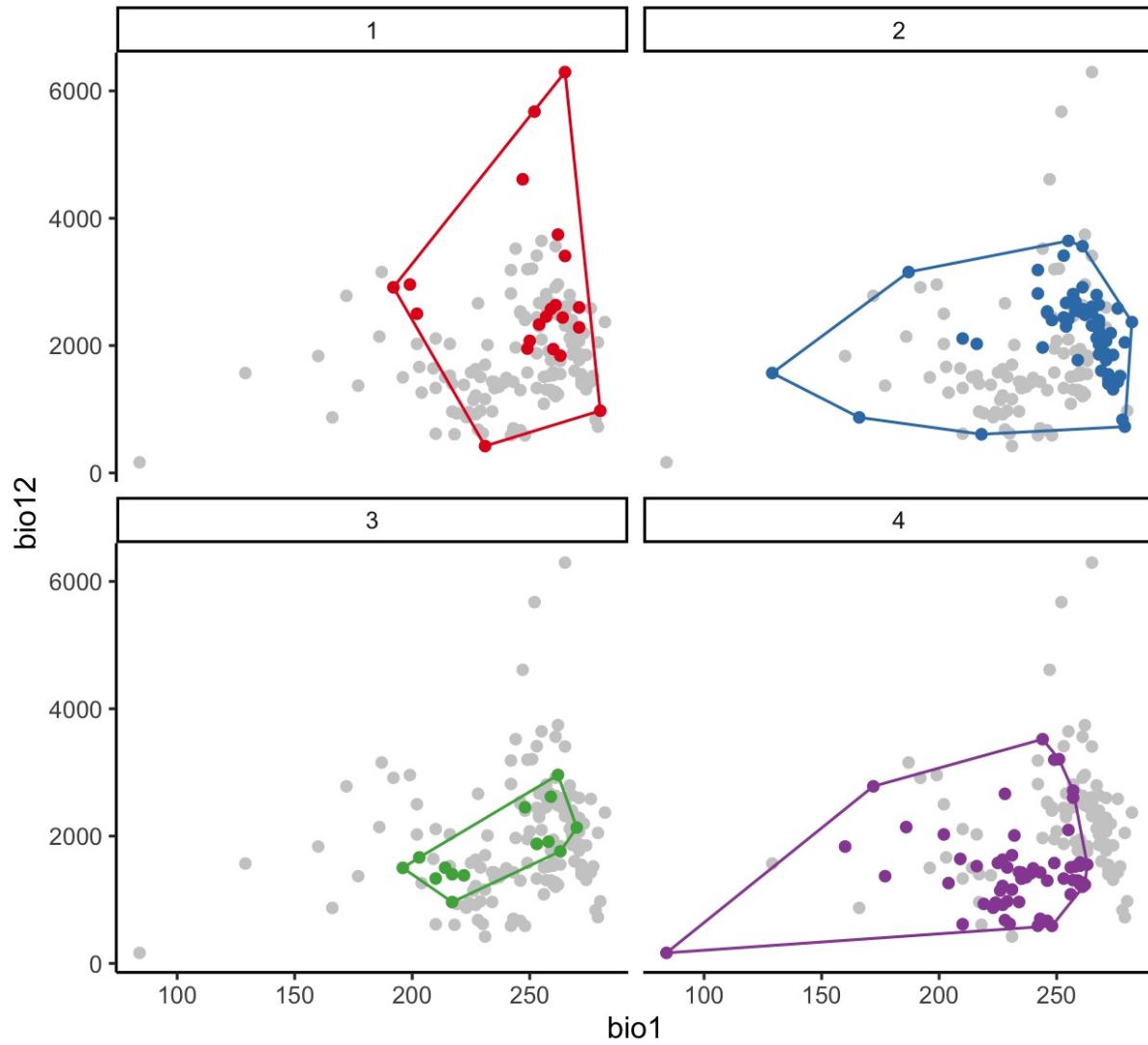
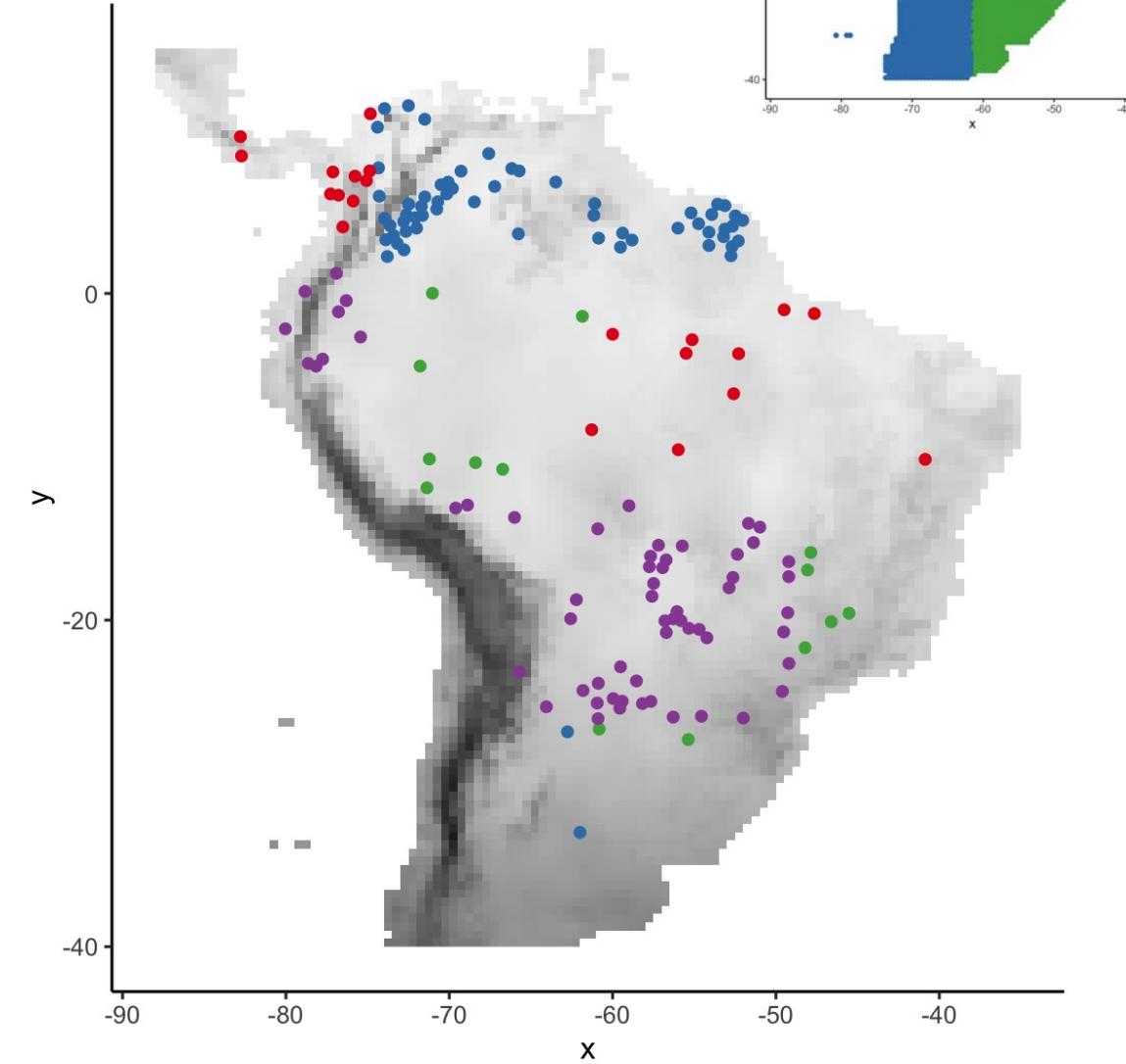
Ways to subset: spatial checkerboard



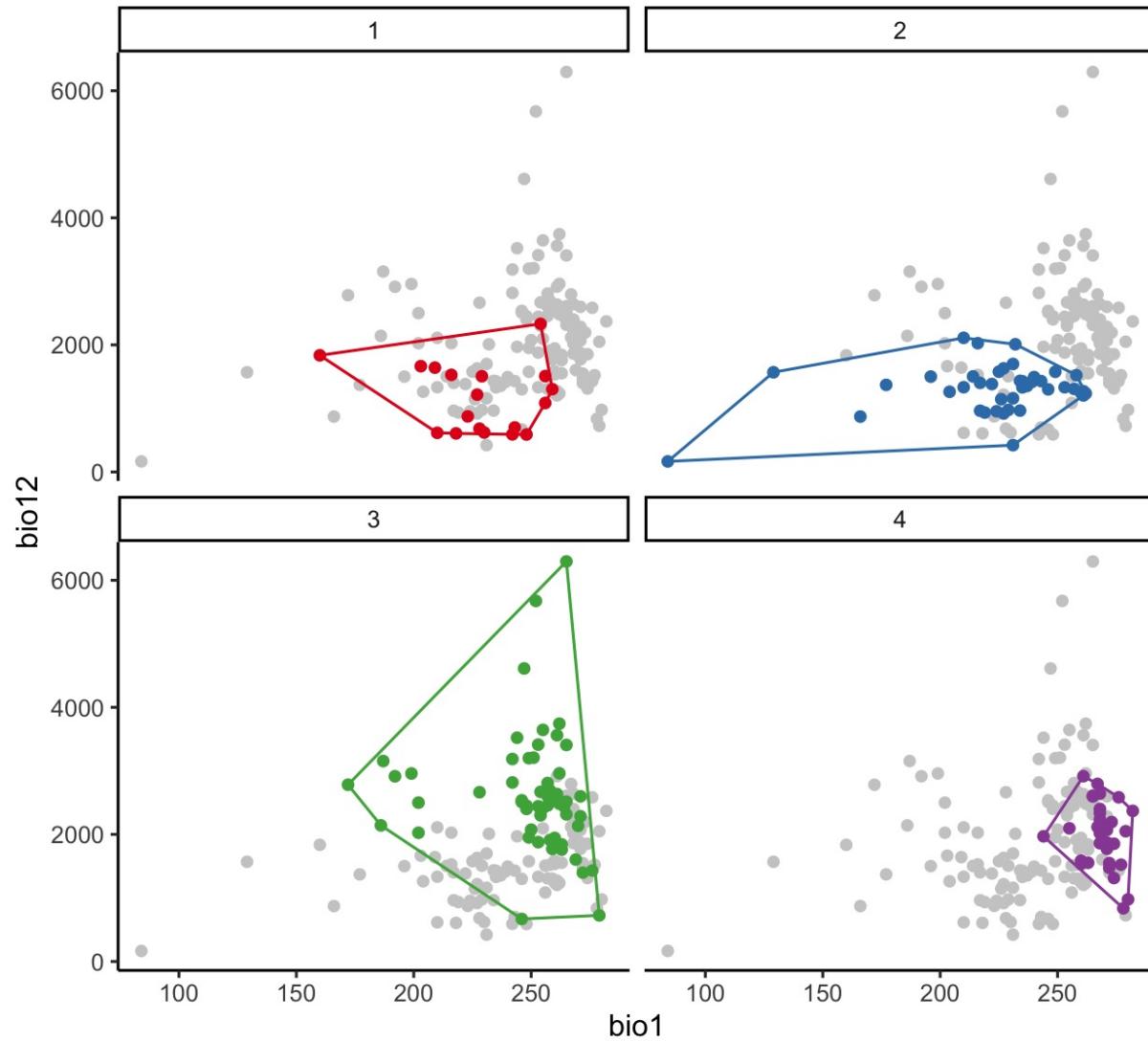
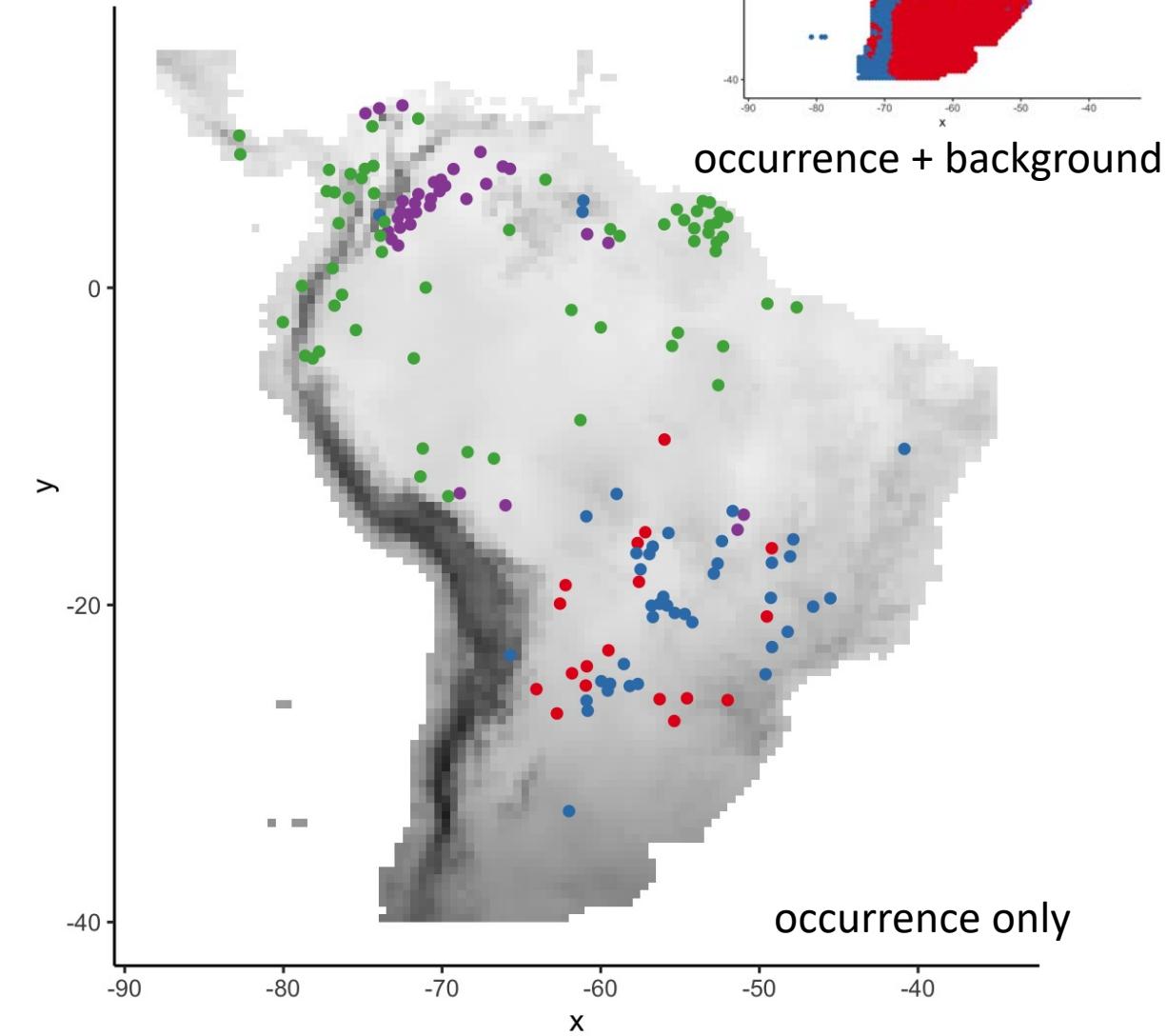
Ways to subset: balanced spatial block

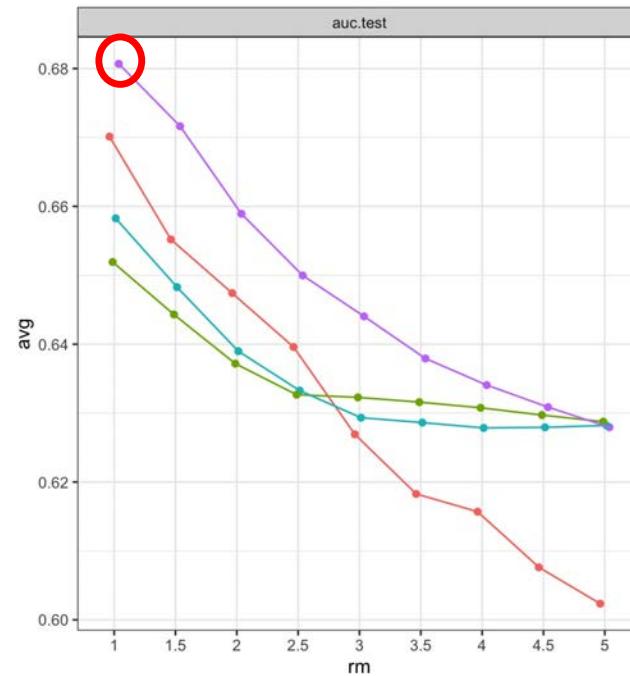
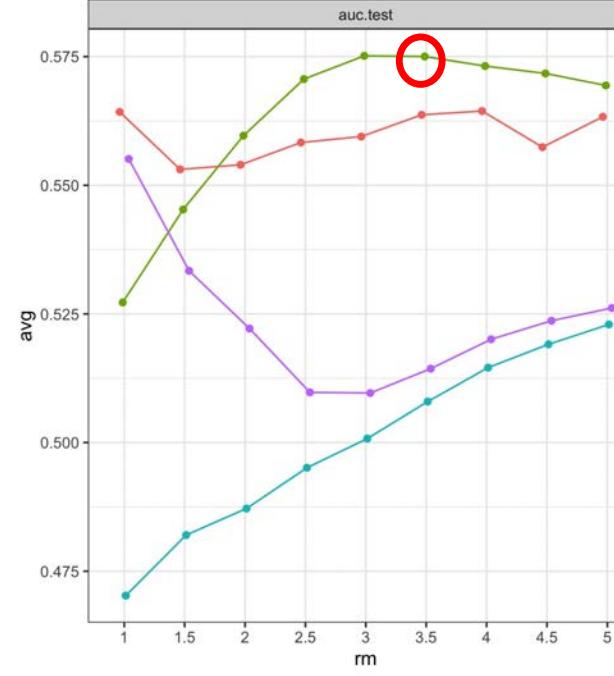
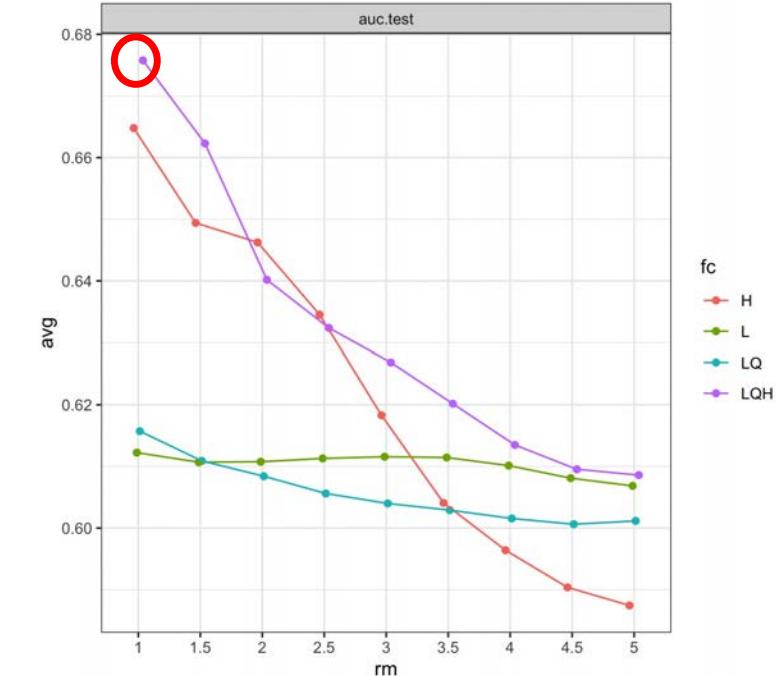
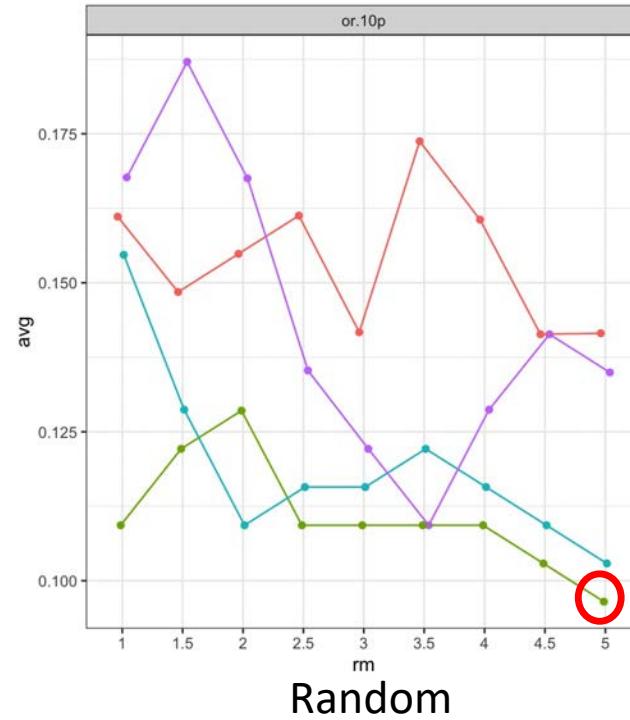
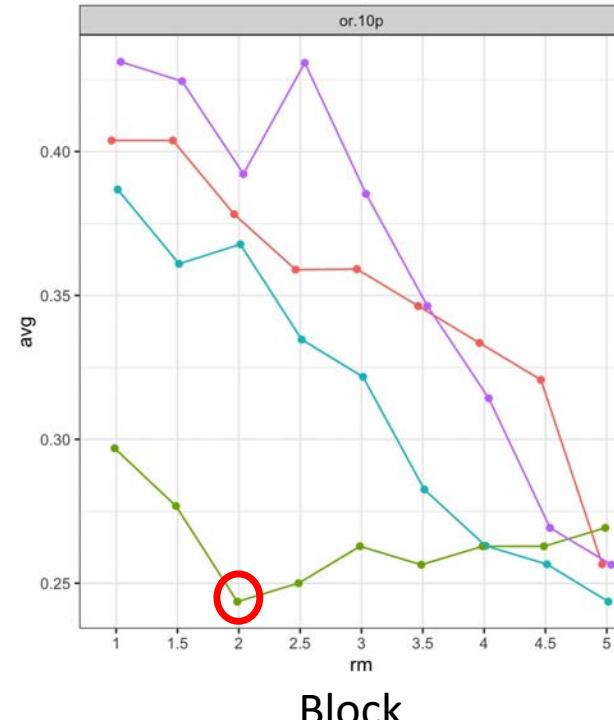
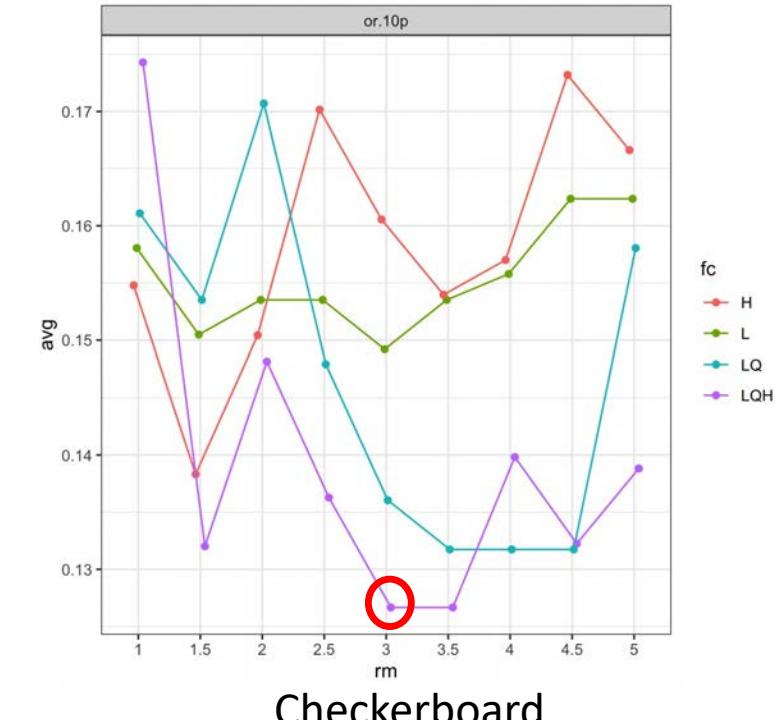


Ways to subset: random spatial blocks



Ways to subset: environmental blocks





Comments on subsetting techniques

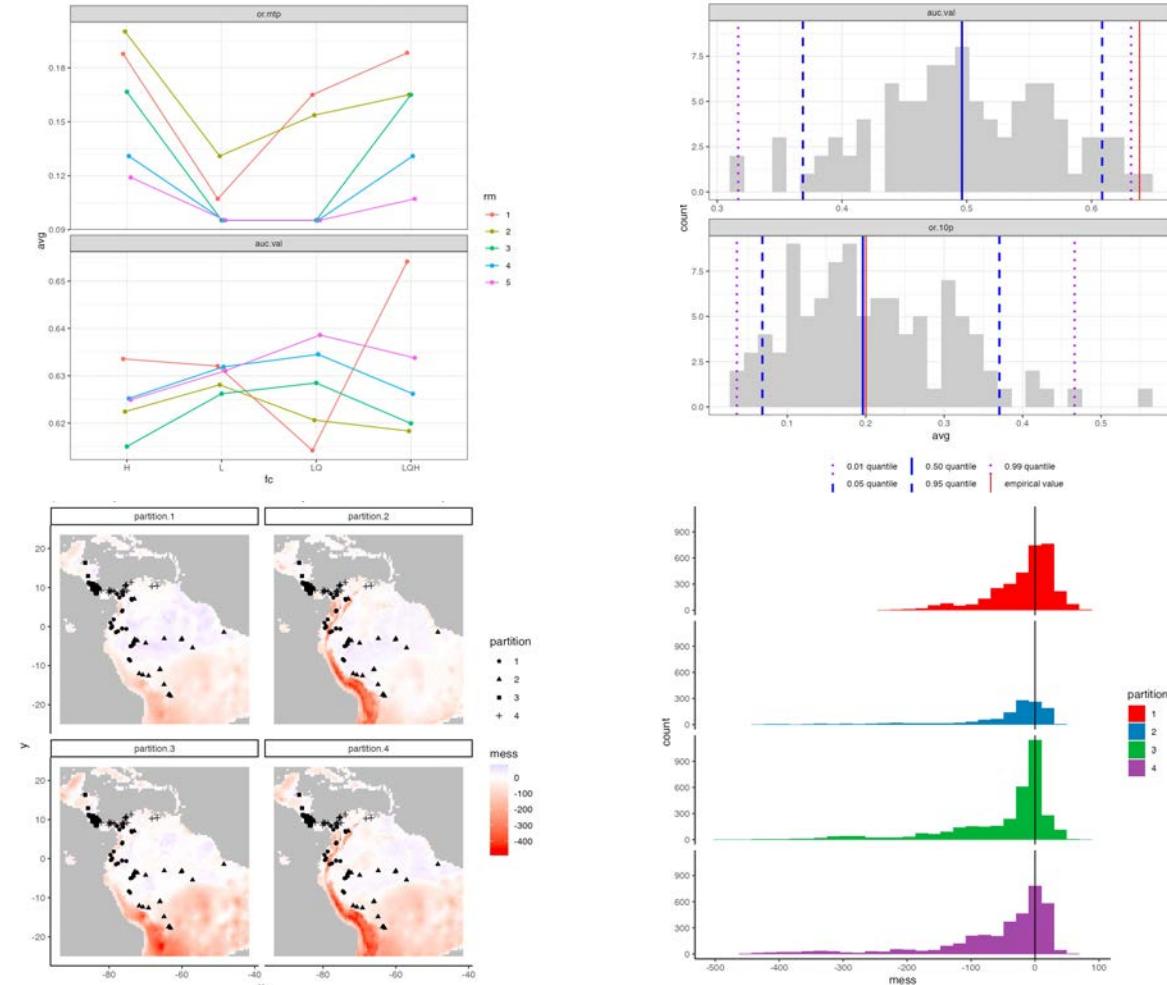
- leave-one-out (jackknife) best for low-data species
- block subsetting should extend to background data
- block subsetting usually results in less optimistic evaluation
(i.e., more realistic)
- spatial checkerboard is likely to have more even sampling across environments than random
- some techniques do not ensure even sampling of occurrences
- blocking can force model extrapolation

ENMeval 2.0.0

- new structure for adding other algorithms
- customizable model settings and performance metrics
- metadata generation (*rangeModelMetadata*)
- null models to quantify significance and effect sizes
- new visualization tools (*ggplot2*) for mapping partitions and showing environmental differences between them

ENMeval 2.0: Redesigned for customizable and reproducible modeling of species' niches and distributions

Jamie M. Kass^{1,2,3} | Robert Muscarella⁴ | Peter J. Galante⁵ | Corentin L. Bohl⁶ | Gonzalo E. Pinilla-Buitrago^{2,3} | Robert A. Boria⁷ | Mariano Soley-Guardia⁸ | Robert P. Anderson^{2,3,9}



Conclusions

- cross validation can help provide estimates of model evaluation with “independent” data
- many ways to subset data (check out *ENMeval*^{1,2} and *blockCV*³)
- block subsetting has several advantages to random, and becomes very important when models are transferred⁴
- choose subsets based on analysis goals (interpolation or extrapolation)

1. Muscarella et al. 2014

2. Kass et al. 2021

3. Valavi et al. 2018

4. Roberts et al. 2017