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Model complexity

* data 1s messy 1n varying degrees
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Model complexity

* data 1s messy 1n varying degrees

* models that are too complex can
overpredict data
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Model complexity

* data 1s messy 1n varying degrees

* models that are too complex can
overpredict data

* models that are too simple can
underpredict data
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Model complexity

* data 1s messy 1n varying degrees

* models that are too complex can
overpredict data

* models that are too simple can
underpredict data

* we need a model in-between
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What creates model complexity?

* the number of predictor variables used to fit the model

* the shapes of the modeled responses / m /Jr/\/\

* the presence of variable interactions r=a+bl*b2



How do we tell how well the model fits?

* model evaluation: measures of model performance on different data sets
* many metrics exist, and it can get confusing
* interpreting the results of model evaluation 1s also not straightforward

* key questions: 1s the model overfit (too complex) or underfit (too simple)?



How do we control complexity?

* exhaustive model selection for standard regression models

* machine learning algorithms have tuning parameters to
penalize complexity

* Examples are Maxent, random forest, boosted regression trees,
neural networks, lasso regression



What does a model evaluation tell us?

* model performance on the data used to build the model

* model performance on new data

* ecological realism for:
= relationships with predictor variables
= spatial predictions



Popular SDM evaluation metrics

range high or | CV R packages
low?

independent cannot use to compare dismo, ENMeval,
diff spp or extents SDMtune, ROCR
pROC independent AUC ratio + yes user-set acceptable pROC, kuenm, ntbox

level of omission error
(e =100% for AUC)

Continuous Boyce independent -1-1 + yes ecospat, ENMeval
Index

omission rate dependent 0-1 - yes dismo, ENMeval
TSS dependent -1-1 + yes cannot use to compare  SDMtune

diff spp or extents

kappa dependent -1-1 + yes cannot use to compare dismo
diff spp or extents

AlCc independent relative - no cannot evaluate ENMeval, SDMtune
transferability



Model evaluation strategy

* each model should be able to accurately predict the input data
* but can each model also accurately predict new data?
* 1f we have independent data, we can evaluate each model on it

* if not, we can evaluate each model on subsets of itself



Data for modeling: terminology

TRAINING VALIDATION
DATA DATA

INDEPENDENT

DATA

cross-validation

used to fit the model used to evaluate the model



Cross validation

1. Split the data into k groups
(a.k.a. subsets, partitions)




Cross validation -

2. Train the model on k- 1
subsets

40
-90
e ®
B e
. -
-
L )
0-
>
>
_20.
- 0-
40+ 1

-90 -80 -70 -60 -50 -40 -90 -80 -70 -60 -50 -40 - - % - "



Cross validation

Evaluate the model on subset
k (calculate an evaluation
statistic)
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Cross validation

4. Repeat for all £
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Cross validation

4. Repeat for all £
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Cross validation

5. Take summary statistics

(mean, sd, etc.) on the subset
evaluations

Finally, compare the model
evaluations to determine the

parameter settings for optimal
complexity
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Model tuning

* we can implement cross validation on a suite of models with
varying complexity

 each model will have associated performance metrics

* we can then conduct model selection to choose an “optimal” model



Example: Giant Anteater

* downloaded from
GBIF with R package
SpocCC

* initially, n =400

* after processing
(geographic and spatial
filtering), n = 155
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How to evaluate models when tuning?

* we could ask how well each model predicts the input data (training data)
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How to evaluate models when tuning?

* we could ask how well each model predicts independent data
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How to evaluate models when tuning?

* we could ask how well each model predicts holdout data on average (testing data)
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Ideal data subset for cross validation

* even number of records across subsets
* not always feasible when number of records is low

* even sampling across environment
* not always feasible when records are absent from certain environments
* not desirable when the goal 1s extrapolation



Purpose of cross validation evaluation

e ability to predict the conditions 1n your data (interpolation)
* ability to transfer to new conditions (extrapolation)
* need to ask yourself: what do you want your model to do?

* then subset your data to make the model evaluations rate this ability



Data for model transfer: terminology
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’,f’ =l used to fit the model
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N TRANSFER new time or
fit with all data DATA new place

used to transfer the model



Block vs. non-block subsetting

* block subsetting: partitioning

the data with some underlying
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Structure structure solution Blocking illustration
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Ways to subset: leave-one-out (jackknife)
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R package ENMeval

Ways to subset: random
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R package ENMeval

Ways to subset: spatial checkerboard
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R package ENMeval

Ways to subset: balanced spatial block
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R package blockCV
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R package blockCV

Ways to subset: environmental blocks
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Comments on subsetting techniques

* leave-one-out (Jackknife) best for low-data species
* block subsetting should extend to background data

* block subsetting usually results in less optimistic evaluation
(i.e., more realistic)

* spatial checkerboard 1s likely to have more even sampling
across environments than random

* some techniques do not ensure even sampling of occurrences

* blocking can force model extrapolation
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Conclusions

* cross validation can help provide estimates of model evaluation
with “independent” data

* many ways to subset data (check out ENMeval'* and blockCV?)

* block subsetting has several advantages to random, and becomes
very important when models are transferred*

* choose subsets based on analysis goals (interpolation or
extrapolation)

1. Muscarella et al. 2014
2. Kass et al. 2021

3. Valavi et al. 2018

4. Roberts et al. 2017



