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Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches.
They are most commonly constructed by inferring species’ occurrence—environment relationships using statistical and
machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive
models, tree-based models, maximum entropy; etc.), and the variety of ways that such models can be implemented, permits
substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study
objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence—environment
relationships and the number of parameters used to describe them, and search for insights into whether additional
complexity is informative or superfluous. By building ‘under fit’ models, having insufficient flexibility to describe observed
occurrence—environment relationships, we risk misunderstanding the factors shaping species distributions. By building
‘over fit’ models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models.
However, model selection can be challenging, especially when comparing models constructed under different modeling
approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models
based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological
processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects
decisions made during model building. Although some generalities are possible, our discussion reflects differences in
opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and
complex SDM building approaches best advances our knowledge of current and future species ranges.

complexity in the occurrence—environment relationships that
they fit. Capturing the appropriate amount of complexity for

Species distribution models (SDMs), also known as ecolo-
gical niche models or habitat selection models, are widely

used in ecology, evolutionary biology, and conservation (Elith
and Leathwick 2009, Franklin 2010, Zimmermann et al.
2010, Peterson et al. 2011, Svenning et al. 2011, Guisan
et al. 2013). SDMs can provide insights into generalities and
idiosyncrasies of the drivers of complex patterns of species’
geographic distributions. SDMs are built using a variety of
statistical methods — e.g. generalized linear/additive models,
tree-based models, maximum entropy — which span a range of

This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

particular study objectives is challenging. By building ‘under
fic models, having insufficient flexibility to describe observed
occurrence—environment relationships, we risk misunder-
standing the factors shaping species distributions. By building
‘over fit models, with excessive flexibility, we risk inadvertently
ascribing pattern to noise or building opaque models. As
such, determining a suitable amount of complexity to include
in SDM:s is crucial for biological applications. Because tradi-
tional model selection is challenging when comparing models
from different SDM modeling approaches (e.g. those in Table
1), we argue that researchers must constrain model complex-
ity based on attributes of the data and study objectives and an
understanding of how these interact with the underlying bio-
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logical processes. Here, we discuss the challenges that choos-
ing an appropriate amount of model complexity poses and
how this influences the use of different statistical methods and
modeling decisions (Elith and Graham 2009).

Complexity is a fundamental feature of observed occur-
rence patterns because occurrence—environment relationships
may be obscured by processes that are not exclusively related
to the environment, such as dispersal, response to disturbance,
and biotic interactions (Pulliam 2000, Holt 2009, Boulangeat
et al. 2012). Consequently, SDMs can be dynamic and pro-
cess-based, explicitly representing aspects of the underlying
biology. This paper focuses on the more widely used static,
correlative SDMs, although many of the issues considered
relate to process-based SDMs as well. Describing this com-
plexity is critical for many applications of SDMs, and using
flexible occurrence—environment relationships allows biolo-
gists to hypothesize about the drivers of complexity or make
accurate predictions that derive from their representation in
SDMs. Such hypotheses are a valuable step toward the types
of process-based models discussed in this issue (Merow et al.
2014, Snell et al. 2014). However, building complex models
comes with the challenge of differentiating true complexity
from noise (see chapter 7 in Hastie et al. 2009 for a statistical
viewpoint on optimising model complexity). Some believe
that flexible models are often overfit to the noise prevalent
in many occurrence data sets. Thus, with such variation in
both needs and opinions regarding model complexity, many
modeling approaches are in current use (Table 1).

We characterize model complexity by the shape of the
inferred occurrence—environment relationships (Table 1)
and the number of posited predictors and parameters used
to describe them. A simpler model typically has relatively
fewer parameters and fewer relationships among predictors
compared to a more complex model. However, it remains a
challenge to quantify complexity in a way that is appropriate
across the spectrum of modeling approaches in Table 1 (e.g.
Janson et al. 2013 showed effective degrees of freedom to be
an unreliable metric when defining complexity). Univariate
‘response curves are commonly used to give an impression
of the complexity of the predicted occurrence—environ-
ment relationships. These are one-dimensional ‘slices’ of
multivariate space. The most common approach is to plot
the predicted occurrence probability against the predictor
of interest by holding all other predictors at their mean or
median values (Elith et al. 2005; Table 1), although other
approaches are possible (Fox 2003, Hastie et al. 2009). When
visualized in this way, a simpler model is relatively smooth,
containing fewer inflection and turning points compared
to a more complex model. Though insightful, univariate
curves only represent the true fitted response incompletely
(3-dimensional response surfaces or the ‘inflated response
curves' of Zurell et al. (2012) help here). Complex models
contain more interactions, which can only be visualized on
higher dimensional surfaces, compared to simpler models.
Such responses must be interpreted as conditional on the
other mean or median predictors in the model, which may
be different than the responses to variables held at other
values (Zurell et al. 2012), or to an unconditional model.
Nonetheless, uni- and multivariate response curves remain
one of the best standardized ways to assess relative model
complexity.
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In this paper, we develop general guidelines for deciding
on an appropriate level of complexity in occurrence—
environment relationships. Uncertainty about how best to
describe ecological complexity has to some extent divided
biologists between those who prefer to use the principle of
parsimony to identify model complexity (preferring the sim-
plest model that is consistent with the data), and those who
try to approximate more of the complexities of the real world
relationships. We review the literature and the general mod-
eling principles emerging from these two viewpoints, and
we discuss the ways in which these overlap or differ in light
of study objectives and attributes of the data. We make a
variety of recommendations for choosing levels of complex-
ity under different circumstances, while highlighting unre-
solved scenarios where viewpoints differ. We conclude with
suggestions for drawing from the strengths of each modeling
approach in order to advance our knowledge of current and
future species geographical ranges.

Complexity in ecology

Many interacting biotic and abiotic processes influence
species distributions and can manifest as complex occurrence—
environment relationships  (Soberén 2007, Boulangeat
et al. 2012). One essential challenge to recovering primary
environmental drivers of these distributions, however, is to
differentiate the signals of range determinants from sampling
and environmental noise. Before embarking on statistical
analyses of range determinants, ecological theory can focus
an investigation (Austin 1976, 2002, 2007, Pulliam 2000,
Chase and Leibold 2003, Holt 2009). There is, a priori, a set
of common drivers of populations that can be used to propose
general shapes of occurrence—environment relationships. For
example, we expect that for many variables, response curves
describing a fundamental niche should be smooth because
sudden jumps in fitness along an environmental gradient are
unlikely to exist (Pulliam 2000, Chase and Leibold 2003,
Holt 2009). For other variables, e.g. related to thermal tol-
erance, steep thresholds may exist due to loss of physiologi-
cal function (Buckley et al. 2011). However, response curves
describing realized niches might exhibit discontinuities due
to the multiple interacting factors that can limit a species’
occurrence in any particular location. Unimodal responses
are expected (e.g. a bell-shaped curve) because conditions too
extreme for survival often exist at either end of a proximal gra-
dient (Austin 2007). However, response curves can be linear
where only part of the environmental range of the species has
been sampled (e.g. one side of a unimodal response; Albert
et al. 2010). Austin and Smith’s (1989) continuum concept
for plant species distributions predicts that skewed unimodal
response curves are likely when plant species distributions are
predominantly determined by one or a few environmental
variables that strongly regulate survivorship and or reproduc-
tion (e.g. by temperature thresholds), but that more irregular
response curves are expected given that species are influenced
by a range of regulatory factors (e.g. different limiting nutri-
ents, biotic and abiotic interactions) and historical contingen-
cies (Austin et al. 1994, Normand et al. 2009). Even with
single factors, the processes that determine fitness may be dif-
ferent across the range, e.g. where one temperature extreme



leads to abrupt loss of function while the other extreme causes
gradually reduced performance. Interaction terms can be desir-
able to capture covariation between predictors or tradeoffs
along resource gradients (e.g. higher temperatures are toler-
able with greater rainfall). Many applications of SDMs do not
explicitly consider such theoretical constraints on the shape
of response curves (but see Santika and Hutchinson 2009),
perhaps because it is difficult to work out how they translate
into observations. We are faced with the challenge of inferring
unknown levels of ecological complexity through the lens of
data and models that imperfectly capture it.

Complexity in models

Two attributes of model fitting determine the complexity of
inferred occurrence—environment relationships in SDMs: the
underlying statistical method and modeling decisions made
about inputs and settings. Together, these define what we
will call different modeling approaches, a number of which
are illustrated in Table 1.

Statistical methods

One of the primary differences among the available statistical
methods for fitting SDMs is the range of transformations of
predictors that they typically consider (in machine learning
parlance: which features’ to allow), and this helps to define
the upper limit of complexity for their fitted response sur-
faces. We detail commonly used modeling approaches and
demonstrate examples of their response curves in Table 1.
Rectilinear or convex-hull environmental envelopes (e.g.
BIOCLIM or DOMAIN) and distance-based approaches
in multivariate environmental spaces (e.g. Malahanobis) are
used in the simplest SDMs. Their response curves are sim-
ple functions (e.g. linear, hinge or step; Elith et al. 2005).
Generalized linear models (GLMs), which are typically fitcted
with linear or polynomial features up to second order terms
(rarely third or fourth order) for SDMs, and often without
interactions, admit more complexity. Generalized additive
models (GAMs) are potentially more complex because they
allow non-parametric smooth functions of variable flexibility
(Hastie and Tibshirani 1990, Wood 2006). Decision trees
(Breiman et al. 1984) can also become quite complex because
these can use a large number of step functions (each requiring
a parameter) and can implicitly include high order interac-
tion terms to depict response curves of arbitrary complexity.

Modeling decisions

Decisions that affect model complexity apply to all the sta-
tistical methods described above. For example, if a large set
of predictors are available, then model complexity will differ
depending on whether the full set, or a small subset, is used.
One must also determine which features are considered in
the model. Each feature requires at least one parameter in the
occurrence—environment relationship and hence increases
model complexity (see increased complexity of black vs
grey MAXENT response curves due to increase in number
of features; Table 1). Large numbers of predictors are more
commonly used in machine-learning approaches because
they automate feature selection whereas fewer are often
used in simpler models where features are specified a priori.

For example, maximum entropy models (MAXENT) can
consider any number of linear, quadratic, product, threshold
(step functions) or hinge transformations of the predictors
(Phillips et al. 2006, Phillips and Dudik 2008). In principle,
this same complexity could be fit in a traditional GLM but
this is typically impractical and not of interest to ecologists.

SDM complexity is amplified when interactions between
predictors are included to account for nonadditive relation-
ships. GLMs and GAMs can include interactions that have
been specified during model formulation as potentially eco-
logically relevant, butare usually used only sparingly. Decision
trees include interactions implicitly through their hierarchi-
cal structure; i.e. the response to one variable depends on
values of inputs higher in the tree, meaning that high order
interaction terms (that depend on all the predictors along a
branch) are possible. However interactions between variables
are fitted automatically if supported by the data and cannot
be explicitly controlled by the user (except to specify the
permissible order of the interactions considered).

Using ensembles of models can increase or decrease com-
plexity. Ensembles are combinations of models in which the
component models can be chosen based on selected crite-
ria (e.g. predictive performance on held out data; Aradjo
and New 2007) or with an ensemble algorithm (a machine
learning method). For instance, regression models selected
via an information criterion can be combined using ‘multi-
model inference’, allowing distributions over effect sizes
and over predictions to new sites (Burnham and Anderson
2002). A typical machine learning approach to ensembles
uses an algorithm to build an ensemble of simple models
that together predict better than any one component model.
Examples include bagging and boosting — while these can be
used on any component models, in ecology the most used
component models are decision trees (e.g. in random for-
ests, Brieman 2001; and boosted regression trees, Friedman
2001). Bagging (bootstrap aggregation) can be used to fit
many models to bootstrapped replicates of the dataset (with
and without random subsetting of predictors used across
trees as in random forests). In contrast, boosting uses a for-
ward stagewise method to build an ensemble, at each step
modeling the residuals of the models fitted to date. Taking
ensembles of relatively simple models usually increases com-
plexity because combinations of simple models will not nec-
essarily be simple. In contrast, ensembles of more complex
models can average over idiosyncrasies of individual models
to produce smoother response curves (Elder 2003).

Model comparison

To avoid overfitting and underfitting, it is common to com-
pare models of differing complexity and select the model
that optimizes some measure of performance. However,
comparing models across modeling approaches (e.g. those in
Table 1) can be challenging. This is one of our motivations
for constraining model complexity based on study objectives
and data attributes. Information theoretic measures are a
conventional way to choose model complexity and are rela-
tively easy to apply for models where estimating the number
of degrees of freedom is possible. However these cannot be
calculated for ensemble-based methods nor for many other
methods in common use (Janson et al. 2013). In fact, Janson
et al. (2013) warn, ‘contrary to folk intuition, model com-
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plexity and degrees of freedom are not synonymous and
may correspond very poorly’. One way to compare mod-
els produced by different algorithms is to adopt a common
currency for model performance by evaluating model predic-
tions on either the training data or independent testing data.
Measures such as AUC, Cohen’s Kappa, and the True Skill
Statistic are based on correctly distinguishing presences from
absences. Measures based on non-thresholded predictions
are also relevant and preferable in many situations (Lawson
et al. 2013). However, each of these metrics has weaknesses
in different circumstances (Lobo et al. 2008) and further,
only represent heuristic diagnostics for presence-only data,
because presences must be compared to pseudoabsence/
background data (Hirzel et al. 2006).

Once one has determined a suitable modeling approach
tuning of the amount of complexity is more straightforward
using a range of model selection techniques. Feature signifi-
cance (e.g. p-values), measures of model fit (e.g. likelihood),
and information criteria (e.g. AIC, AICc¢, BIC; Burnham and
Anderson 2002) can be applied to regression-based meth-
ods. Cross-validation or other resampling techniques are also
used to set the smoothness of splines in GAMs (Wood 2006)
or to determine tuning parameters in most machine learning
methods (Hastie et al. 2009). Shrinkage or regularization is
often used in regression, MAXENT and boosted regression
trees to constrain coeflicient estimates so models predict reli-
ably (Phillips et al. 2006, Hastie et al. 2009). Loss functions,
which penalize for errors in prediction, can be constructed
for any of the modeling approaches we consider (Hastie
etal. 2009). An alternative approach employs null models to
evaluate whether additional complexity has lead to spurious
predictive accuracy (Raes and terSteege 2007).

Evaluation against fit to training data alone cannot con-
trol for over fitting and risks selecting excessively complex
models (Pearce and Ferrier 2000, Aratjo et al. 2005). In
general, best practice involves splitting the data into train-
ing data to fit the model, validation data for model selec-
tion, and test data to evaluate the predictive performance
of the selected model (Hastie et al. 2009). Recent studies
have emphasized that care should also be taken in how data
is partitioned into training, evaluation and test data, in par-
ticular to control for spatial autocorrelation (Latimer et al.
2006, Dormann et al. 2007, Veloz 2009, Hijmans 2012; see
below for more details). Hence methods such as block cross-
validation (where blocks are spatially stratified) are gaining
momentum (Hutchinson et al. 2011, Pearson et al. 2013,
Warton et al. 2013). Failure to factor out spatial autocor-
relation in data partitioning can lead to misleadingly good
estimates of model predictive performance.

Basing model comparison on holdout data presents some
practical challenges. Sample size may be insufficient to sub-
set the data without introducing bias. Subsets of data can
contain the same or different biases compared to the full data
set. In particular, it can be difficult to remove spatial correla-
tion between training and holdout data when the sampling
design for the occurrence data is unknown or when a spe-
cies is restricted geographically or environmentally (this is
discussed below).

Importantly, all these approaches to model comparison
have strengths and weaknesses and none can unambiguously
select between models of differing complexity built with dif-
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ferent statistical methods and underlying assumptions. The
tried and tested methods of statistics and machine learning
for model selection are valuable when working within a par-
ticular modeling approach, but to benefit from these, it is
valuable to narrow the scope of the feasible models based
on biological considerations. We therefore now move to
exploring approaches for identifying the appropriate level
of complexity for particular study objectives based on data
limitations and the underlying biological processes.

Philosophical, statistical and biological
considerations when choosing complexity

In this section, we discuss factors that should influence the
choice of model complexity. First, we outline general consid-
erations and philosophical differences underlying both simple
and complex modeling strategies (section Simple versus com-
plex: fundamental approaches to describing natural systems).
Next, we discuss how the study goals (section Study objec-
tives) and data attributes (section Data attributes) interact
with model complexity. Figure 1 summarizes our findings.
Importantly, a general consensus for choosing model com-
plexity is not possible in many cases. To reflect the different
schools of thought, we divide our facts, ideas and opinions into
those that are relatively uncontroversial (subsections denoted
‘Recommendations’), those that favor simple models (denoted
‘Simple’), and those that favor more complex models (denoted
‘Complex’). We recall that simple’ and ‘complex’ refer to the
extremes along a gradient of complexity in response curves pro-

Sample size

small large

genera-
tion

&

range

proximal

distal
niche or

unknown

SDM application

<4 so|qeLeA J0joIpald

large &
coarse

interpo-
late

large small

R
\Spatial autocorrelation 7
Figure 1. Influence of attributes of study objectives and data attri-
butes on the choice of model complexity. Green arrows illustrate
attributes where the choice of complexity is of no particular con-
cern. Red arrows illustrate the situations where caution and/or
experimentation with model complexity is needed. Gray arrows
indicate decisions that involve interactions with other study goals
or data attributes. The thickness of the arrows illustrates the strength
of the arguments in favor of choosing a specific level of complexity,
with thicker arrows indicating stronger arguments.



duced by distinct statistical methods and modeling decisions
(section Complexity in models and Table 1).

Simple versus complex: fundamental approaches to
describing natural systems

Simple

Simple models tend towards a conservative, parsimoni-
ous approach and typically avoid over-ficting. They link
model structure to hypotheses that posit occurrence—
environment relationships a priori and examine whether the
resulting model meets these expectations. Simple models
have greater tractability, can facilitate the interpretation of
coeflicients (cf. Tibshirani 1996), can help in understanding
the primary drivers of species occurrence patterns, and are
likely to be more easily generalized to new data sets (Randin
et al. 2006, Elith et al. 2010). Although complex responses
surely exist in nature, we cannot often detect them because
their signal is weak or they are confounded with sampling
noise, bias or spatial autocorrelation. By using models that
are too complex, one can inadvertently assign patterns due to
either data limitations or missing processes, or both, to envi-
ronmental suitability and fit the patterns simply by chance.

Complex

Complex models are often semi- or fully non-parametric,
and are preferred when there is no desire to impose para-
metric assumptions, specific functional forms or pre-select
predictors for models a priori. This does not mean that they
are not biologically motivated, but rather emphasizes the
reality that Nature is complex. Simple models may be readily
interpretable but misleading (Breiman 2001), and for many
applications of SDMs a preference for predictive accuracy in
new data sets over interpretability is justifiable. Also, com-
plex models are not necessarily difficult to interpret. Indeed,
their complexity can be valuable for suggesting novel, unex-
pected responses. If we do not explore the full spectrum of
complexity, there is a risk of obtaining an overly simplified,
or even biased, view of ecological responses. Complex mod-
els can, depending on how they are structured, still identify
simple relationships if responses are strong and robust.

Study objectives

Niche description vs range mapping

Two prominent applications of SDMs are characterizing
the predictors that define a species’ niche and projecting
fitted models across a landscape. Niche characterization
quantifies the variables, primarily climate and physical, that
affect a species” distribution. This is often done by analyz-
ing response curves, the functions (coefficients or smoothing
terms) that define them, and their relative importance in the
model. Projecting these fitted models across a landscape can
predict the geographic locations where the species may occur
in the present or in the future. In some studies, focus lies in
the final mapped predictions rather than how they derive
from the underlying ficted models.

Recommendations
Some evaluation of the biological plausibility of the shape
and complexity of response curves is always valuable, even

if the objective is not niche description. Such evaluation is
particularly critical for extrapolation (section Interpolate vs
extrapolate), though it is admittedly quite challenging in
multivariate models. Modelers should also carefully evaluate
whether maps built from complex models substantially dif-
fer from maps built from simple models. If the predictions
differ, the source of this should be explored. If the interest
lies in interpretation, it is important to assess whether the
mapped predictions are right for the right reason, and that
complex environmental responses have not become proxies
for sources of spatial aggregation in the data that lead to bias
when projected to other locations (whether interpolation or
extrapolation; section Spatial autocorrelation).

Simple

Simple models are preferable for niche description because
they usually yield straightforward, smooth response curves
that can be linked directly to ecological niche theory (section
Complexity in models; Austin 2007), in contrast to the often
irregular shapes that result from complex models (Table 1).
Assumptions about species responses are more transparent
when simple models are being projected in new situations.

Complex

Complex models can be valuable for describing a species’
niche when only qualitative descriptors of response curves
are necessary (e.g. positive/negative, modality, relative impor-
tance) — i.e. even complex responses can be described in
terms of main trends. Allowing complexity might offer more
chance of identifying relevant response shapes. Complex
models can be powerful for accurately mapping within the
fitting region (Elith et al. 2005, Randin et al. 2006) when
one is not necessarily concerned with an ecological under-
standing of the complexity of underlying models. Although
the source of complex relationships may remain unknown,
complex models have the flexibility to describe these. Abrupt
steps in response curves might be helpful to uncover strictly
unsuitable sites when mapping distribution in space.

Hypothesis testing vs hypothesis generation

Some SDM studies are focused on testing specific hypoth-
eses related to how species are distributed in relation to par-
ticular predictors or features. In others, little is known about
the predictors shaping the distribution and the objective is
to explore occurrence—environment relationships and gen-
erate hypotheses for explanation. For example, SDMs are
valuable exploratory analyses for detecting the processes that
confound occurrence—environment relationships, such as
transient dynamics, dispersal, biotic interactions, or human
modification of landscapes. The indirect effect of such pro-
cesses can be seen in occurrence patterns, often due to abrupt
changes or nonlinearities in response curves, leading to
hypothesis generation. Whether one is testing or generating
hypotheses critically affects the level of complexity permitted
because hypothesis testing depends on being able to isolate
the affects of particular features, whereas this matters less
when exploring data in order to generate hypotheses.

Recommendations

When testing hypotheses, insights from ecological theory
can guide the selection of features to include. A higher degree

1273



of control over the specific details of the underlying response
surface is likely needed for hypothesis testing, which is made
much easier using simple models. Hypothesis testing is more
challenging in complex models with correlated features that
can trade off with one another. Complex models are well
suited to hypothesis generation, enabling a wider range of
environmental covariates and modeling options than can be
conveniently explored with simple models.

Simple

When the goal is hypothesis testing, simple parametric
models allow investigation of the strength and shape of
relationships between species occurrence and a small set of
features. Furthermore, parametric models allow for hypoth-
esis tests to examine if specific nonlinear features should be
included in the selected model(s). The problem with com-
plex models in such a setting is that with the large suite of
potential features that they use, it is challenging to deter-
mine the significance of a single feature or attribute of the
response curve or to compare alternative models. Instead,
one is constrained to accept the features selected by the sta-
tistical method (e.g. features classes in MAXENT; splits in
tree-based methods) to represent that predictor (within some
user-specified bounds). Rather, it is preferable to specify a
set of features (or multiple sets for competing models) to
determine the suitability for describing a particular pattern.
For example, when features are selected automatically, it may
be challenging to determine whether a quadratic term that
makes the response unimodal is important or how much
better/worse the model might be without it.

Complex

The starting premises, for hypothesis testing, is a priori
ecological understanding enabling the user to select a small
set of features. However, we do not always have this prior
understanding. Complex models explore much larger sets of
nonlinear features and interactions than simple models and
are suited for generating hypotheses about underlying pro-
cesses (Boulangeat et al. 2012) derived from potentially flex-
ible responses that would not often be detected with simpler
models (e.g. bimodality). This same flexibility can be used to
augment existing knowledge. For example, if we know that
a species is associated with dry, high elevation locations, we
don’t need a simplified model to describe this, but rather
more insight from a potentially complex model to capture
bimodality or strong asymmetries. Complex models also
provide tools for evaluating predictor importance, which
is useful for both generation and testing of hypotheses and
can lead to inference that differs little from simpler models
(Grémping 2009). These importance indices can be gener-
ated from permutation tests (Strobl et al. 2008, Grémping
2009), contribution to the likelihood (e.g. ‘percent contri-
bution’ in MAXENT), or proportion of deviance explained
(decision trees).

Interpolate vs extrapolate

When predicting species’ distributions over space and
time, it is important to distinguish between interpolation
and extrapolation. When a point is interpolated by a fitted
model, it lies within the known data range of predictors, but
was not measured for its response. Alternatively, an extrapo-

1274

lated point is one that lies outside the observed range of
the predictor. Both interpolation and extrapolation can
occur in geographic or environmental space (cf. Peterson
etal. 2011, Aarts et al. 2012). Extrapolation requires cau-
tion in all scenarios but cannot be avoided when assess-
ing questions relating to ‘no-analogue’ climate scenarios
(Aradjo et al. 2005) or range expansion. The correlative
models discussed here are not optimal for extrapolation in
many cases; process-based models are generally preferred
because the functional form of the response curve captures
the processes that apply beyond the range of observed data
(Kearney and Porter 2009, Thuiller et al. 2013, Merow
et al. 2014).

Recommendations

The challenges associated with interpolation and extrapola-
tion, though differing in the way they manifest, are apparent
for models of any complexity and hence simple and com-
plex perspectives align. Interpolation within the range of the
observed data will be accurate if the model includes all pro-
cesses operating in the interpolation extent and is based on
well-structured data. Without that, prediction to unsampled
sites will average across unrepresented processes and might
reflect biases in the sample. More generally, it may not mat-
ter whether a response curve is complex as long as it retains
the basic qualities of a simpler model. For example, a line or
a sequence of small step functions parallel to the line can pro-
duce similar predictions. Some caution should be taken with
complex models, as complex combinations of features can
become proxies for unmeasured spatial factors in unintended
ways and inadvertently model clustering in geographic space
as complexity in environmental space, which can lead to
errant interpolation (section Spatial autocorrelation).

Extrapolation always requires that response curves have
been checked for biological plausibility (cf. section Niche
description vs range mapping). Of course, even simple mod-
els can extrapolate poorly. For example, Thuiller et al. (2004)
showed that a simple GLM or GAM run on a restricted and
incomplete range could create spurious termination of the
smoothed relationships, leading to errant extrapolation.
Hence, the importance of extrapolation can depend on the
chosen spatial extent and on the selected features (section
Spatial extents and resolution). Complex models should
be carefully monitored at the edges of the data range, both
because small sample sizes and the ways different statistical
methods handle extrapolation can have drastic effects on
predictions (Pearson et al. 2006).

When using complex models, feature space may be sparsely
sampled, which means that when one expects to interpo-
late a predictor, there may be inadvertent extrapolation of
nonlinear features. For example, in a model with interaction
terms, one may adequately sample the linear features for all
predictors while poorly sampling the relevant combinations
of these predictors (Zurell et al. 2012). Complex models can
lead to different combinations of features producing similar
model performance in the present (Maggini et al. 2006), but
vastly diverging spatial predictions when transferred to other
conditions (Thuiller 2003, Thuiller et al. 2004, Pearson et al.
2006, Edwards et al. 20006, Elith et al. 2010). Narrowing the
range of possibilities using a simpler model that controls for
the biological plausibility of the response curves (cf. section



Complexity in models) can reduce this divergence (Randin
et al. 2000).

Data attributes

Sample size

The number of occurrence records is a critical limiting
factor when building SDMs. With presence—absence
data, the number of records in the least frequent class
determines the amount of information available for
modeling. Small sample sizes can lead to low signal to
noise ratios, thereby making it difficult to evaluate the
strength of any occurrence—environment pattern in the
presence of confounding processes.

Recommendations

Simple models are necessary for species with few occurrences
to avoid over-fitting (Fig. 1). This suggests few predictors
and only simple features. Support for features can be found
by reporting intervals on response curves (e.g. from confi-
dence intervals or subsamples), with an eye for tight intervals
around pronounced nonlinearities. For large data sets, any
of the modeling approaches described earlier are potentially
suitable, dependent on study objectives.

Simple

We expect a large amount of noise in occurrence data due
to processes unrelated to environmental responses and this
noise can be particularly influential when sample sizes are
small. For example, if a basic temperature response is built
from data that are variably influenced by a strong land-use
history and dispersal limitation throughout the range, a
failure to take that into account results in a misspecified
climate response surface. While simple models have a
chance of smoothing over such variations, complex models
can more readily fit these latent patterns, leading to biased
prediction when models are projection to other locations
where the latent processes differ. Complex models fitting
many features are only appropriate when there are sufficient
data to meaningfully train, test and validate the model (cf.
Hastie et al. 2009).

Complex

If data are available, increasing the number of predictors
ensures a more accurate understanding of the drivers of
distributions. If the data set is small, it is possible to use a
method that can be potentially complex, as long as it is well
controlled by the user to protect against over-fitting e.g.,
using penalized likelihoods (Tibshirani 1996), a reduced
set of features in MAXENT; (Phillips and Dudik 2008,
Merow et al. 2013), or heavy pruning in tree-based methods.
Permitting some complexity may be useful to identify coun-
terintuitive response curves and develop stratified sampling
strategies for future data collection to support or refute the
model responses.

Sampling bias

Sampling bias arises from imperfect sampling design, which
includes purposive, non-probabilistic, or targeted sampling
(Schreuder et al. 2001, Edwards et al. 2006) and imperfect
detection (MacKenzie et al. 2002). The important question

is whether sampling bias — which often arises in geographic
space — transfers to bias in environmental space, and
further, whether some environments are completely unsam-
pled. No statistical manipulation can fully overcome biased
sampling. The main challenge when choosing complexity is
that — particularly for models based on presence-only data
— it may be unclear whether patterns in environmental
space derive from habitat suitability, divergence between
the fundamental and realized niches (Pulliam 2000), tran-
sient behavior, or sampling problems (Phillips et al. 2009,
Hefley et al. 2013, Warton et al. 2013). For presence—
absence data with perfect detection, sampling biases may
not be too detrimental as long as at least some samples exist
across environments into which the model is required to
predict (Zadrozny 2004, but see Edwards et al. 2006 for
contrasting results).

Recommendations

More flexible models will be more prone to finding patterns
in restricted parts of environmental space where sampling
is problematic. Poor performance on test data could iden-
tify over fitting to sampling bias, but only if the test data
are unbiased. In practice, if unbiased testing data were avail-
able, they could be used to build an unbiased model in the
first place. Recent advances that enable presence-only and
presence—absence data to be modeled together, and across
species, will be useful in this context (Fithian et al. 2014).
A tradeoff exists between a complex model that might fit,
e.g. step functions to few data points in poorly sampled
regions and simple models that predict smooth but poten-
tially meaningless functions from just a few points.

Simple

The hope when using simple models for biased data is that
main trends are still identified. Complex models can over-fit
to the bias (particularly if the bias is heterogeneous in space)
and miss the true main trends. Methods for dealing with
imperfect detection (MacKenzie and Royle 2005, Welsh
etal. 2013) or sampling design often specify relatively simple
responses to environment because they simultaneously fit the
model for sampling (Latimer et al. 2006), and identifiability
can become an issue when too many parameters are used
that might relate to either observation or occurrence. In such
cases, inference will be limited to very general trends.

Complex

If the sampling bias is strongly linked to the environmen-
tal gradients, even simple models can predict spurious rela-
tionships (Lahoz-Monfort et al. 2013). Complex models
could be useful in understanding, or hypothesizing about,
the nature of the sampling bias: for example, the most par-
simonious explanation for sharp changes in the probability
of presence in some circumstances could be sampling bias,
although we know of no published examples. Detection and
sampling bias models are not restricted to simple models
— for instance, the former have recently been developed for
boosted regression trees (Hutchinson et al. 2011) and the
latter are often used with MAXENT (Phillips et al. 2009).

Predictor variables: proximal vs distal
A priority in selecting candidate predictors is to identify
variables that are as proximal as possible to the factors
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constraining the species’ distribution. Proximal variables
(e.g. soil moisture for plants) best represent the resources
and direct gradients that influence species ranges (Austin
2002). More distal predictors, such as using topographic
aspect as a surrogate for soil moisture, do not directly affect
species distributions but do so indirectly through their
imperfect relationships with the proximal predictors they
replace. The problem with using distal predictors is that
their correlation with the proximal predictor can change
across the species’ range, even if the proximal predictor’s
relationship with the species does not (Dormann et al.
2013). We rarely have access to all of the most impor-
tant proximal predictors across a study region, so the main
question is what response shapes should we expect for
more distal predictors? Imagine that a species is limited by
the duration of the growing season, but that the response
is instead modeled with a combination of mean annual
temperature and topographic position (aspect, slope, etc.).
It is difficult to anticipate the shape of the multivariate
surface that mimics the species response to the proximal
predictor.

Recommendations

Responses to proximal predictors over sufficiently large gra-
dients should be relatively strong (Austin 2007 and refer-
ences therein), and either simple or complex models should
be able to identify these responses if complexity is suitably
controlled. However, the extent to which the included
set of predictors is proximal or distal may be unknown.
Experimentation with complex and simple models may help
test hypotheses about which predictors are more proximal,
potentially best encapsulated in a simple response curve, and
those that are more distal and better represented with more
complex curves. As physiological mechanisms generally
provide the best insights into how environmental gradients
translate into demographic (and therefore population) pat-
terns, the use of informed physiological understanding could
provide a valuable starting point (Austin 2007, Kearney and
Porter 2009).

Simple

Ecological theory supports using unimodal or skewed
smooth responses to proximal variables (Austin and Nicholls
1997, Oksanen 1997, Austin 2002, 2007, Guisan and
Thuiller 2005, Franklin 2010), which motivates constrain-
ing the functional form of response curves a priori (section
Complexity in models; e.g. specific features in a GLM, few
nodes in a GAM). Remotely sensed data, even for proximal
predictors, may introduce noise to the environmental covari-
ates due to imprecision and to use of long term averaged data
(Austin 2007, Letten et al. 2013), and may be prone to over-
fitting with complex models if those data generally fail to
describe the local habitat conditions accurately. One can use
simple models to smooth over such idiosyncrasies if the main
trends are sufficiently strong or one can omit predictors if
trends are weak. Parametric, latent variable models can help
to deal with this imprecision (Mcinerny and Purves 2011).

Complex

Ecological theory is based on responses to idealized gradi-
ents, whereas we observe (often imperfectly) a messy reality.
Specifying an overly simple model will result in over- and
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under-estimation of the response at points throughout
the covariate space (Barry and Elith 20006). Given that
the relationship between proximal and distal predic-
tors is unlikely linear and may vary across landscapes, it is
likely that the true response to distal variables might also
be complex and best represented by a model that allows
flexible fits and interactions. Hence the complex viewpoint
still adheres to ecological theory, but allows for a modified
view of idealized relationships as seen through available
data.

Spatial extents and resolution

Interpretation of ecological patterns is scale dependent; hence
changing spatial extent and/or resolution affects the patterns
and processes that can be modeled (Tobalske 2002, Chave
2013). Ecologists often use hierarchical concepts to describe
influences of environment on species distributions — for
instance, that climate dominates distributions of terrestrial
species at the global scale (coarsest grain, largest extent), while
topography, lithology or habitat structure create the finer scale
variation that impact species at regional to local scales together
with dispersal limitations and biotic interactions (Boulangeat
et al. 2012, Dubuis et al. 2012, Thuiller et al. 2013). SDMs
built across large spatial extents often rely on remotely sensed,
coarse resolution or highly interpolated predictors, creating
inherent biases and sampling issues (section Sampling bias).
The choice of extent can also determine whether the species
entire range is included in the model or whether data are
censored (e.g. limited by political borders).

Recommendations

Resolutions should be chosen that provide data from proxi-
mal rather than distal variables. Such data are becoming
available at high resolutions with expanded and technologi-
cally enhanced monitoring networks and more sophisticated
interpolation of climate data (e.g. PRISM). The choice of
resolution hence reduces to the discussion of proximal ver-
sus distal predictors in section Predictor variables: proximal
vs distal. When the extent is chosen to contain the species’
entire range, models should include sufficient complexity to
detect unimodal, skewed responses (section Complexity in
models).

Simple

Smooth responses, characterized by simpler models, are to
be expected at large spatial extents and coarse resolution
that smooth over the confounding processes that affect finer
resolution occurrence patterns (Austin 2007). At finer reso-
lutions, it may also be undesirable to incorporate the full
complexity of the response curve: much of the finer details
may derive from factors for which no predictor variables are
available or are irrelevant to the purpose of the investigation
(e.g. microhabitat or regional competition effects).

Complex

At small spatial extents, we might have data on the relevant
proximal factors (e.g. soil properties), so fitting complex
models along small-scale gradients can capture this complex-
ity. Also, complex models may be useful for exploring the
nonlinearities that arise in response curves from distal vari-
ables at broad scales in that they potentially provide insight
into important unmeasured variables.



Spatial autocorrelation

Many processes omitted from SDMs have spatial structure.
For example, dispersal limitation, foraging behavior, com-
petition, prevailing weather patterns, and even sampling
bias can all lead to spatially structured occurrence patterns
that are not explained by the set of predictors included in
the SDM (Legendre 1993, Barry and Elith 2006, but see
Latimer et al 2006, Dormann et al. 2007). When these
spatial patterns are not appropriately accounted for, biased
estimates of environmental responses may emerge.

Recommendations

If presence—absence data are available, one should assess the
degree of spatial autocorrelation in the residuals and imple-
ment methods to control for spatial autocorrelation. Methods
include spatially-explicit models that separate the spatial pat-
tern from the environmental response (Latimer et al. 2006,
Dormann et al. 2007, Beale et al. 2010), using spatial eigen-
vectors as predictors (Diniz-Filho and Bini 2005), or strati-
fied sub-sampling of the data to minimize autocorrelation
(Hijmans 2012). Complex models should be used cautiously
in the presence of spatial autocorrelation, because their flex-
ibility may lead to them confounding aggregation in geo-
graphic space with complexity in environmental space. For
example, if a large number of presences are recorded in a
small region of environmental space due to social behavior
in geographic space, it is more likely that a complex model
can find some feature in environmental space that correlates
with this clustering. This will result in biased interpretation
or mapped projections in other locations where this social
behavior is absent. Cross-validation can eliminate such spu-
rious fits, but only if it is spatially stratified at an appropriate
scale. However, when used for exploratory purposes, com-
plex models may reveal information about this spatial struc-
ture within their response curves.

Simple

Simple parametric models can accommodate spatial structure
under assumptions about the correlation structure (Latimer
et al. 2006, Dormann et al. 2007). If a non-spatial model
is used, simple models can be valuable because they are not
flexible enough to model discontinuities in the response
curve that derive from spatial structure, however they will
still exhibit bias due to aggregated observations. Another
solution to dealing with spatial aggregation is to model at
sufficiently coarse resolution (suggesting simple models; see
Spatial extents and resolution) that geographic clustering
occurs within (and not among) cells, so it can effectively be
ignored. One should be cautious building complex models
because in practice, obtaining spatially independent cross-
validation samples is extremely challenging when the under-
lying spatial process is unknown and failing to do so likely
leads to over-fitting (cf. Hijmans 2012).

Complex

It may be desirable to use complex response curves as prox-
ies for geographic clustering for mapping applications if the
model focuses on small extents where nonlinear relation-
ships are likely to hold across the landscape of interest (e.g.
interpolation). For example, Santika and Hutchinson (2009)
showed that using only linear responses in logistic regression
reduced the model performance by misleadingly introducing

spatial autocorrelation in the residuals, instead of allowing
for unimodal responses in semi-parametric GAMs. Methods
broadly dealing with spatial and temporal autocorrelation
are more recently available for complex models (Hothorn
etal. 2011, Crase et al. 2012).

Conclusions

Methodological

Based on our observations on the appropriate use of differ-
ent statistical methods and modeling decisions, how should
modelers proceed to build SDMs? Many modelers’ prefer-
ences for particular statistical methods derive from the types
of data they typically use and the questions they ask, rather
than any fundamental philosophy of statistical modeling.
For this reason, it is valuable for modelers to have experience
in both simple and complex modeling strategies. We sug-
gest that researchers develop a comprehensive understanding
of regression models in general and GLMs in particular, as
these represent the foundation of almost all of the more com-
plex modeling frameworks. Also, understanding at least one
approach to building complex SDMs can allow for sequen-
tial tests of more complex model structure. Importantly,
because there are many different approaches to handling the
same challenges in the data, it is less critical to understand
each and every modeling approach than to become an expert
in applying representatives of simple and complex modeling
approaches.

Bias can come from over fitting complex models, and
it can come from misspecified simple models. To find a
model of optimal complexity, many approaches are pos-
sible and are readily justified if sufficient cross-validation
has been performed. One might consider starting simple
and adding the minimum complexity necessary (Snell et al.
2014, this issue), or conversely starting with a complex
model and removing as much superfluous complexity as
possible. If one can narrow down the potential complex-
ity based on the considerations discussed here to consider
models within a particular modeling approach (Table 1),
then traditional model selection techniques are appropriate
(section Modeling decisions).

Due to the exploratory nature of many SDMs and the
desire to discover spatial patterns and their drivers, we rec-
ommend that analyses begin exploration using complex
models to determine an upper bound on the complexity
of response curves. Over fitting can be controlled through
cross-validation (e.g. k-fold, and particularly block resa-
mpling methods), even if a full decomposition into train-
validation-test data is not feasible. Furthermore, complex
models can be used to identify smooth, simple occurrence—
environment relationships if patterns are sufficiently strong
and guide specification of simpler models. In contrast, it
will be more difficult to overcome a misspecified simple
model, should a more complex response exist. If the explo-
ration with complex models reveals smooth relationships,
one can shift to a simpler model. If instead strong nonlin-
earities are prevalent, one should consider biological expla-
nations for the nonlinearities. If complex nonlinearities
cannot be avoided, one should focus on minimizing the
complexity, understanding it through sensitivity analysis
and uncertainty analysis (below) and providing biologically
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based hypotheses about it. The end result is a model that
adds complexity only to the extent necessary to reproduce
observed patterns.

Uncertainty analysis is a relatively untapped resource
for understanding appropriate model complexity. When
the influence of particular model components is unknown
(e.g. whether a predictor or feature is relevant a priori) it is
particularly critical to account for uncertainty in modeled
relationships to explore the implications of our ignorance.
By studying uncertainty, one can gain confidence in pro-
nounced nonlinearities when they come with tight confi-
dence intervals. Information on parameter uncertainty, and
consequently prediction uncertainty, can be obtained from
any means of simulation from parameter distributions,
including posterior sampling, sampling based on point esti-
mates and covariance matrices, or bootstrapping. Bayesian
models have the advantage of using the full data set to esti-
mate parameter uncertainty, but are generally restricted to
simpler models to avoid convergence issues (Latimer et al.
20006, Ibdnez et al. 2009). One way of reducing uncertainty
in predictions is to analyze the importance of predictors
given the model and data using ‘average predictive com-
parisons’ (Gelman and Pardoe 2007) a form of sensitivity
analysis that incorporates parameter uncertainty. One can
also quantify uncertainty due to our modeling decisions
by using ensembles of models built with different statis-
tical methods or decisions (Pearson et al. 2006, Aradjo
and New 2007, Thuiller et al. 2009), provided that each
component model is built based on modeling decisions
reflecting a common goal.

Biological
Despite the valuable insights we can gain from occurrence
models, it is worth acknowledging that fundamental limita-
tions to biological inference may emerge from these stud-
ies (Tyre et al. 2001, Aratjo and Guisan 2006, Araujo and
Peterson 2012, Merow et al. 2013). Balancing complex and
simple models in such a way as to discover and discuss these
limits may be as important as the actual patterns identified
with some datasets. More broadly, it is important to keep in
mind that we are ultimately performing exploratory analy-
ses of occurrence—environment relationships. Occurrence
records are not the ideal data to predict attributes of popula-
tions, Thuiller et al. (2014) provide an interesting caution-
ary note by showing weak relationships between occurrence
probability and various demographic parameters for 108 tree
species in temperate forests. However, often no other data
are available at large spatial extents that might inform range
models. Thus, while the limits may be obvious, insights from
occurrence-based correlative models may be an essential
step in developing new hypotheses and research programs
that can lead to the next generation of mechanistic models
(Schurr et al. 2012, Thuiller et al. 2013, Snell et al. 2014).
A novel, and potentially important, application of SDMs
is for informing mechanistic models about the shapes of
response curve in demographic models (Merow et al. 2014),
or dynamic spatio-temporal population models (Pagel and
Schurr 2012, Boulangeat et al. 2014, Thuiller et al. 2014).
Simple models may be preferable for these tasks because it
is important to have a clear hypothesis to evaluate when
linking it to a particular process (Thuiller et al. 2013). For
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example, SDMs might inform variable selection for the
growth, survival and fecundity models in Integral Projection
Models (Easterling et al. 2000). However highly nonlinear
relationships would not be desirable for vital rate models due
to the unlikely transitions through the life history that they
might imply (cf. Merow et al. 2014). It is particularly impor-
tant to avoid confounding missing processes with complex
environmental responses (as might occur in complex mod-
els) when the mechanistic model explicitly describes the
mechanisms that produce that aggregation (e.g. dispersal
or species interactions: Kissling et al. 2012). The challenge
in using SDMs in this way lies in ensuring response curves
truly reflect environmental limitations; while environmental
tolerance may limit a species’ distribution at one end of a
gradient, other (e.g. biotic) factors may limit it at the other
end (Zimmermann et al. 2009).

Many issues of response curve complexity that we discuss
are also relevant for process-based SDMs. Representations
of processes are incorporated into SDMs to improve the
precision and accuracy, or to improve our understanding of
ecological processes. Consequently, process-based models are
used more for prediction and hypothesis testing than descrip-
tion and hypothesis generation. Yet, preferences for different
model complexity persist (Evans et al. 2013, Lonergan et al.
2014). Study objectives influence the choice of complexity;
i.e. whether the model is intended for extrapolation or for
understanding the potential importance of mechanisms.
In the former case, simple models are useful to make the
study of the role of a mechanism more analytically tractable.
In the latter case, preference might be towards more com-
plex models, where the roles of specific mechanisms can
be understood in relation to other interconnected mecha-
nisms. When the objective is prediction, complex models
are valuable to represent all known relevant mechanisms in
order to obtain the ‘best guess’. Simpler models are valuable
when analyses imply that only certain key mechanisms are
needed for sufficient predictive accuracy (further discussion
in Evans et al. 2013). Attributes of the available data may be
less important with process-based models when relevant test
datasets are well understood. However, data considerations
are important when mechanisms or parameters are inferred
from data or when assessing the spatiotemporal resolution
over which particular degrees of abstraction and parameter
values are relevant (Evans et al. 2013, Lonergan 2014, Snell
et al. 2014). In any case, we expect that progress towards
improved process-based models lies in challenging occur-
rence-based SDMs with stronger biological justifications
and interpretations that aim to shed light on the mechanisms
that drive process-based models.
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