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Ecography The most common approach to predicting how species ranges and ecological
43: 60—74, 2020 functions will shift with climate change is to construct correlative species distribution
doi: 10.1111/ecog.04630 models (SDMs). These models use a species” climatic distribution to determine cur-

rently suitable areas for the species and project its potential distribution under future
Subject Editor: Christine Meynard climate scenarios. A core, rarely tested, assumption of SDMs is that all populations
Editor-in-Chief: Miguel Aradjo will respond equivalently to climate. Few studies have examined this assumption,
Accepted 11 September 2019 and those that have rarely dissect the reasons for intraspecific differences. Focusing

on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy
from SDMs constructed using the species” full global distribution with composite
predictions from separate SDMs constructed using subpopulations defined either by
genetic or habitat differences. This is one of the first studies to compare multiple ways
of constructing intraspecific-level SDMs with a species-level SDM. We also exam-
ine the contested relationship between relative probability of occurrence and species
performance or ecological function, testing if SDM output can predict individual
performance (plant size) and biotic interactions (facilitation). We found that both
genetic- and habitat-informed SDMs are considerably more accurate than a species-
level SDM, and that the genetic model substandially differs from and outperforms
the habitat model. While SDMs have been used to infer population performance and
possibly even biotic interactions, in our system these relationships were extremely
weak. Our results indicate that individual subpopulations may respond differently
to climate, although we discuss and explore several alternative explanations for the
superior performance of intraspecific-level SDMs. We emphasize the need to carefully
examine how to best define intraspecific-level SDM:s as well as how potential genetic,
environmental, or sampling variation within species ranges can critically affect
SDM predictions. We urge caution in inferring population performance or biotic
interactions from SDM predictions, as these often-assumed relationships are not
supported in our study.
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Introduction

Discerning how and where populations will respond to
climate change is now a central topic in ecological research,
with great interest in applying this knowledge to inform con-
servation and management decisions in order to mitigate
species extinction risks. A common approach is to deter-
mine how the potential distribution of a given species will
shift in space with climatic changes using correlative Species
Distribution Models (SDMs; Pacifici et al. 2015). Such
SDMs correlate a species” occurrences to current climate in
order to predict the species’ relative probability of occurrence
(P,.) in space and time (reviewed by Wiens et al. 2009).
Assuming that species track the modeled environmental
conditions, this method allows ecologists to draw conclu-
sions on how species’ distributions will shift in the future
(Elith et al. 2011, Hughes et al. 2012). Given the accessibil-
ity of global species occurrence records (gbif.org 2018), high
resolution climate data (WorldClim et al. 2017, CHELSA,
Karger et al. 2017), and user-friendly software (e.g. MaxEnt
software packages, Phillips et al. 2006), SDMs are widely
utilized to predict species’ range shifts across the globe
(Merow et al. 2013, Pacifici et al. 2015).

Despite their ubiquitous use, however, there has been
increasing criticism of SDMs regarding their over-simplifi-
cation of the factors that limit species distributions (Aratjo
and Peterson 2012, Early and Sax 2014). SDMs that use
predominately climatic factors to predict a species’ distribu-
tion make the key assumptions that 1) the species’ range is
in equilibrium with its climatic niche (Veloz et al. 2012), 2)
climate is indeed the main distribution driver (Aratjo and
Peterson 2012), 3) the climate niche is static over timescales
relevant to predictions and 4) all populations respond identi-
cally to climate, such that the climate niche for the species is
also that for individual populations (Wiens et al. 2009). Even
given the long history of work that shows strong evidence for

local adaptation to climate conditions in many plants and
animals (Mayr 1956, Aitken et al. 2008, Pelini et al. 2009,
Fournier-Level et al. 2011, Ruegg et al. 2018), it is poorly
understood how differences in local population responses to
climate may affect SDM results (but see Hllfors et al. 2016,
Schwalm et al. 2016, Theodoridis et al. 2018) and thus how
important this last assumption may be. More research on
this is especially needed, as recent work has shown that pre-
dictions of range shifts using species-wide SDMs underesti-
mate intraspecific genetic diversity loss (Balint et al. 2011,
Alsos et al. 2012).

The most common approach to constructing climate-based
SDMs is to use all available data on a species’ occurrences
to predict its distribution, implicitly assuming the same
climatic responses across populations (Aratjo and Peterson
2012, Merow et al. 2013). Out of the thousands of SDM
studies published, we could find only 30 previous studies
(Supplementary material Appendix 1 Table Al for search
methods and results) that account for intraspecific differ-
ences in climate responses by separately modeling smaller
units (henceforth, ‘subpopulations’) of a species range, which
generally grouped according to presumed genetic differences,
differing climate histories, or geographic regions (Table 1).
Combining these intraspecific-level SDMs yields predictions
of P, over the same geographical extent as a species-level
SDM, while predicting P, for subpopulations according
to their corresponding climate distributions. While broadly
defined subpopulations may not, in fact, capture intraspe-
cific variation in climate responses, testing for such effects by
constructing intraspecific-level SDMs could be an important
improvement, allowing for potential differences in climatic
response (Hillfors et al. 2016). However, only three studies
have examined multiple approaches to defining subpopula-
tions (Table 1, Supplementary material Appendix 1 Table Al)
and thus it is unclear to what extent these differences might
influence SDM predictions.

Table 1. Summary of intraspecific-level SDM studies. For the 30 studies we found that have used intraspecific-level SDMs, we summarize
in columns (from left to right) 1) approaches to identifying subpopulations (Genetic=genetic groups and/or taxonomic lineages,
Habitat=climatic and/or geographic groups, Other=discrete phenotypes), 2) approaches to validating the intraspecific-level SDMs (Cal.
data=validation using the calibration dataset, Ind. data=validation using independent data on distribution, Niche div.=tests for niche
divergence controlling for background environments), 3) methods used to compare alternative SDMs (Global =species-level model pooling
all occurrences, Mult. subpop.=study includes multiple intraspecific-level SDMs, based on alternative groupings of occurrences,
Subpop. > global =for studies that compared species-level and intraspecific-level SDMs, how many found that the intraspecific-level model
performed best?) and 4) interpretation of mechanisms for intraspecific-level SDM differences (LA=demonstrating genetically-based local
adaptation to climate, Sampling =reflecting differences in sampling intensity among subpopulations, Habitat avail. =reflecting differences in
habitat availability among subpopulations). Note that we focus on studies using traditional SDM approaches calibrated with occurrence
data within a species’ native range and do not include related approaches that incorporate intraspecific structure through modeling
ecosystem types or data from transplant experiments (Benito-Garzén et al. 2011, Gray et al. 2011, Hamann and Aitken 2013). Rows give
the number (N) and percentage (%) of studies that meet each criterion. For details of individual studies and the approaches used to identify
intraspecific-level SDMs, see Supplementary material Appendix 1 Table AT.

Identifying subpopulations Model validation SDM comparison Interpretation

Cal.  Ind.  Niche Mult. Habitat
Genetic ~ Habitat ~ Other data  data div.  Global  subpop. Subpop. > global LA Sampling avail.
N 26 5 1 28 0 7 20 3 13 22 4 8
%o 87 17 3 93 0 23 67 10 65* 73 13 27

*Note that the percentage is out of 20 studies that included a species-level SDM.
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Improvements in predictions between intraspecific-level
SDMs and the corresponding species-level SDM have gen-
erally been interpreted as indicating local adaptation to
climate (Table 1, Supplementary material Appendix 1 Table A1)
or more broadly, differences in climate responses, be they
adaptive or not. However, even in the absence of any geneti-
cally-based niche divergence, intraspecific-level SDMs could
produce different predictions simply due to over-fitting,
better representation of under-sampled climates, or environ-
mental differences (including biotic interactions) among the
defined subpopulations leading to different inferred climate
responses. Regardless of the mechanisms involved, the extent
and importance of differences between intraspecific-level and
species-level SDM predictions have only been considered in
very few of the intraspecific-level SDM studies we identified
(Table 1, Supplementary material Appendix 1 Table Al),
limiting our understanding of how important this complica-
tion is for climate response predictions.

While SDMs only formally predict P,_, their outputs
have been assumed to correlate to population performance,
such as population persistence (Aratjo and Williams 2000),
functional traits (Thuiller et al. 2009), and abundance
(Weber et al. 2017). However, predicting species perfor-
mance with SDM output is controversial and recent studies
have disagreed over the extent to which SDM output can accu-
rately predict aspects of population performance. While some
researchers have demonstrated strong links between SDM
predictions and abundance (VanDerWal et al. 2009, Van
Couwenberghe et al. 2013, Lee-Yaw et al. 2016), recent meta-
analyses show that this relationship is stronger in vertebrates
than in plants (Weber et al. 2017) or even that this relationship
hardly exists at all (Dallas and Hastings 2018). Other studies
further question the link to demographic rates (Thuiller et al.
2014, Cserg6 et al. 2017). Even the existing evidence for using
distance to environmental, not geographic, centers to predict
population performance (Martinez-Meyer et al. 2012) and
genetic diversity (Lira-Noriega and Manthey 2014) has been
recently contested (Pironon et al. 2017, Santini et al. 2018) as
a possible oversimplification of the biogeographic drivers on
populations (Dallas et al. 2017). Thus, the extent to which
SDM output can be used to infer the distribution of popula-
tion performance or other traits still needs closer examination.
This is especially important for species interactions, which can
be influential drivers of species range limits (Early and Keith
2018). Given that positive species interactions, such as facilita-
tion and mutualism, can dramatically broaden species’ ranges
(Afkhami et al. 2014), it is particularly relevant to understand
if they can be described by SDM output.

In this study, we test the ability of SDMs to 1) predict
a species’ P, contrasting global versus intraspecific-level
SDMs, and 2) predict local population performance as well
as positive species interactions. To address the first question,
we examine how intraspecific-level and species-level SDMs
differ for a circumboreal alpine-arctic plant, using broad
genetic and habitat (i.e. biome) differences to construct
intraspecific-level SDMs. While there is likely finer-scale
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differentiation within our broadly defined subpopulations,
grouping occurrence data by broad patterns of genetic dif-
ferentiation (Pearman et al. 2010, D’Amen et al. 2013,
Serra-Varela et al. 2017) and climate or habitat differences
(Sork et al. 2010, Hillfors et al. 2016, Hu et al. 2017) is a
common approach for intraspecific-level SDMs. Despite the
fact that genetic versus habitat-based approaches to defining
subpopulations can potentially yield differing predictions, no
previous study has compared these approaches (but see e.g.
Marcer et al. 2016 for comparison of genetic and trait-based
models). To address the second question, we test the predic-
tive value of SDM-derived P, _ for other aspects of population
performance and ecological function.

We test these questions for the facilitative arctic-alpine
cushion plant Silene acaulis (Caryophyllaceae). Silene acaulis
is a long-lived gynodioecious perennial, and its cushion-like
growth form and deep taproot are thought to be adapta-
tions to harsh arctic-alpine conditions (Griggs 1956, Billings
1974). Individual cushions slowly grow radially outwards
and are known to live 300 yr or longer (Morris and Doak
1998). Individual performance can be measured by cushion
size, as larger cushions 1) produce disproportionally more
fruits than smaller ones (Chardon et al. 2019a) and 2) grow
faster, survive better, or both (Morris and Doak 1998). Silene
acaulis is an ideal species for this work, as there is evidence
for local adaptation to climate (Peterson et al. 2018) as well
as genetic structure (Gussarova et al. 2015), and global trait
data are available (Doak and Morris 2010, Cavieres et al.
2013) to comprehensively analyze whether SDM output can
predict traits. Its wide distribution (Hultén and Fries 1986)
across the Northern hemisphere makes it optimal for SDMs
(Pacifici et al. 2015) and particularly appropriate for this
study, as greater intraspecific variation may exist relative to
more narrowly distributed species.

Silene acaulis’ cushion growth form makes it an important
facilitator of other arctic-alpine species (Cavieres et al. 2016).
The facilitative effects of cushion plants generally increase
along elevational gradients, as they provide the necessary
microhabitat for beneficiary species to establish at high eleva-
tions characterized by increased abiotic stress (Callaway et al.
2002). These facilitative interactions, however, can break
down at extremely high levels of abiotic stress (Michalet et al.
2006, reviewed in Liancourt et al. 2017). Facilitative plants
are not only important in structuring plant communities
around the globe (Cavieres et al. 2016), but can also buf-
fer responses to rapid climatic changes in alpine and arctic
regions (Anthelme et al. 2014). As S. acaulis is projected to
lose over half of its climatically suitable habitat in the next 20 yr
(Ferrarini et al. 2019), it is particularly critical to under-
stand how this important facilitative arctic-alpine species will
respond to forecasted climatic changes.

We hypothesize that the genetic- and habitat-based intra-
specific-level SDMs will provide more accurate distribution
predictions than the species-level SDM and that the two
intraspecific-level models will yield very similar results to
each other (hypothesis 1). This would suggest that broad scale



genetic and habitat differences capture at least some variation
in local climate responses, which would be reflected in the
intraspecific-level SDMs. We also expect that any differ-
ences seen in model predictions will not be explained sim-
ply by differences in climate across subpopulations. Second,
we hypothesize that if SDM P__ captures the potential for
high population performance (Aratjo and Williams 2000),
S. acaulis individual plant sizes will be larger in areas of
higher P, (hypothesis 2), as larger plants grow faster, survive
better, or both (Morris and Doak 1998). Third, as facilita-
tive interactions tend to be higher in climatically stressful
areas (Callaway et al. 2002), we expect that high facilitative
interaction strength will correspond with low predicted
P . for S. acaulis (hypothesis 3).

Material and methods

Climate data

We used four bioclimatic variables from the CHELSA
dataset in the timeframe 1979 to 2013 (during which most
of our species data is available) and at a 30 arc-sec (~1 km?)
resolution (Karger et al. 2017). These four variables were
recently used in a S. acaulis SDM study (Pironon et al.
2015) and have been shown to be particularly important
predictors in SDMs (Bradie and Leung 2017): maximum
temperature of the warmest month, temperature season-
ality (i.e. difference between annual mean minimum and
maximum), precipitation of the wettest month, and pre-
cipitation seasonality (Supplementary material Appendix
1 Fig. Al). Using shapefile boundaries of North America,
Europe and Russia (thematicmapping.org 2018), we
cropped these bioclimatic variables to encompass the broad
geographic regions that define S. acaulis global distribu-
tion. To account for the distinct climates over the large
land-locked bodies of water found within the species’
range (e.g. Canada), we also removed the climate data
of large lakes (>50km?) and reservoirs (> 0.5km?;
WWE Global Lakes and Wetlands Database).

Species occurrences

We combined geographic occurrences from two existing data
sets on S. acaulis traits (see ‘Species traits’ below; Doak and
Morris 2010, Cavieres et al. 2013), occurrences from a S.
acaulis genetic study (Supplementary material Appendix 1
in Gussarova et al. 2015), and S. acaulis occurrence records
from digital databases. We downloaded all ‘Silene acaulis
(and listed subspecies) digital occurrence records from the
databases BIEN (biendata.org 2018), GBIF (gbif.org 2018),
and BioTIME (BioTIME Consortium 2018, Dornelas et al.
2018). To match the resolution and timeframe of the occur-
rence data to the bioclimatic data, we performed several oper-
ations. First, we filtered all data at 1km geographic position
accuracy or better and at 1979 data collection year or later,
where these metadata were available. Second, we removed any

exact latitude and longitude duplicate occurrences. Third, to
reduce erroneous occurrences, we filtered all data to retain
only biomes that contain alpine or tundra terrain within
S. acaulis geographic distribution (‘Tundra’, “Temperate
Conifer Forests’, “Temperate Broadleaf and Mixed Forests’,
‘Boreal Forests/Taiga’; Ecoregions 2017). As this filter deleted
the only occurrence record from eastern Russia, we added
it back in because of its rare verification of existence in this
region (Gussarova et al. 2015) and our use of this record to
determine geographic delineations of genetic groups. Fourth,
we manually checked isolated southern or lower elevation
occurrences in the USA and mainland Europe (GoogleEarth
Pro 2009) and removed six occurrences in terrain where
S. acaulis does not naturally grow (i.e. in forests). We rec-
ognize that this occurrence dataset does not fully represent
the range of S. acaulis, as is the case in many occurrence
records (Meyer et al. 2016). In particular, occurrences in the
Canadian and Russian Arctic range of the species are mark-
edly sparse, however both arctic and alpine regions are well
represented in the occurrence data (Fig. 1).

Species traits

We obtained S. acaulis trait data from a global cushion plant
study on facilitative interactions (Burtterfield et al. 2013,
Cavieres et al. 2013, Lortie 2018) and a long-term demo-
graphic study (Doak and Morris 2010, Peterson et al. 2018,
Doak et al. unpubl.). These data span S. acaulis geographic
distribution, with a total of 50 sites over 8 countries in both
North America and Europe (Fig. 1a, Supplementary material
Appendix 1 Table A2). These data include individual plant
cushion size (measured as elliptical area; n=5890 plants), a
good plant performance indicator because larger plants 1)
grow faster, survive longer, or both (Morris and Doak 1998)
and 2) produce disproportionally more fruits (Chardon et al.
2019a). Although these data were obtained over the span
of multiple years, it has been shown across a range of sites
and years that there is very little size variation between years
due to S. acaulis’ slow growth rate (Morris and Doak 1998;
Supplementary material Appendix 1 Fig. A2). The data also
include percent cover and richness of beneficiary species grow-
ing within individual cushion plants (n=1674 plants). The
strength of plant—plant facilitative interactions is commonly
measured as beneficiary species percent cover and richness
(Cavieres et al. 2016), from which we calculated a beneficiary
species Shannon diversity index for each S. acaulis individual
(vegan package; Oksanen et al. 2018). While cushion plant
size can influence facilitative interactions (Chardon et al.
2018), our data show only moderate correlation (correlation
of size and beneficiary species percent cover=0.46; size and
richness = 0.39; size and diversity = 0.33).

We subset the plant size data to 1) account for meth-
odological differences between the two datasets and 2)
focus on larger plants in order to best capture variation in
population performance. As plant size data was recorded
through either targeted sampling of larger individu-
als (Cavieres et al. 2013) or sampling all individuals in a
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Figure 1. Digital occurrences and trait data span the species’ range. (a) Data on cushion sizes (n =50 sites), and additionally on beneficiary
species growing within cushions (n=21 sites), span the geographic range of Silene acaulis. (b) Splits in occurrence data according to genetic
groups defined by Gussarova et al. (2015) for their sampled individuals, with adjacent groups split with means of: 1) maximum latitude in
SW American and minimum latitude in Beringia/American; 2) maximum longitude in Beringia/American and minimum in E Adantic; 3)
southernmost occurrence in E Atlantic and northernmost occurrence in SC-European; 4) easternmost occurrence in Beringia/American
and westernmost occurrence in E Atlantic. Occurrence data grouped into the four genetic groups Beringian (n=440), American (n=99),
Atlantic (n=3252), or European (n=316). (c) Occurrence data grouped according to biomes in either the Nearctic or Palearctic realms
defined by Ecoregions (2017). Nearctic occurrences split into the biomes (a) “Temperate Conifer Forest (n=252), (b) ‘Boreal
Forest/Taiga  + “Temperate Broadleaf and Mixed Forests’ (n=62), and (c) “Tundra’ (n=225). Palearctic occurrences split into the biomes (d)
‘Boreal Forest/Taiga® (n=1434), (¢) “Temperate Conifer Forest’ + “Temperate Broadleaf and Mixed Forests’ (n=950), and (f) “Tundra
(n=1183). Adjacent biome types combined where occurrences were < 20 for an individual biome (b) and to combine the European Alps

and Pyrenees (e). Maps in Albers projection.

population (Doak and Morris 2010; for comparison see
Supplementary material Appendix 1 Fig. A8 in Chardon etal.
2018), we first retained only cushion sizes of plants above the
65th percentile overall from the latter dataset, a cutoff that
best aligned the two size distributions (Supplementary mate-
rial Appendix 1 Fig. A3a-b). As we specifically aimed to test
if SDM output can predict cushion plant sizes (see ‘Model
performance’” below), we then subset all data to only include
plant sizes above the 40th percentile (Supplementary mate-
rial Appendix 1 Fig. A3c). This provided the best fit out of a
set of cutoffs tested, and using other cutoffs does not change
the qualitative patterns in the results. Larger plant sizes are
more meaningful population performance indicators than
the full plant size distribution, as larger plants correlate better
with environmental variables and produce disproportionately
more fruits (Morris and Doak 1998, Chardon et al. 2019a).

Species distribution models

To correct for some of the sampling bias present in the
occurrence records, which are far denser in Europe than
in either North America or Russia, we subsampled all
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records by keeping only one occurrence per 30arc-sec cell
(‘gridSample’ function in dismo package; Hijmans et al.
2017) to match the resolution of the bioclimatic data (total
n=4107 occurrences; Fig. 1a). Although this does not cor-
rect for unsampled areas, it is a standard bias correction
approach (Fourcade et al. 2014, Guisan et al. 2017). We
then split the occurrences into four genetic groups identi-
fied by STRUCTURE analyses of multilocus AFLP markers
(335 markers for 106 populations) by Gussarova et al. (Fig. 1b;
corresponding to Fig. 4 in Gussarova et al. 2015). We also
split the occurrences into six habitat biome groups in the
Nearctic or Palearctic realms (Fig. 1c; shapefile boundar-
ies from Ecoregions 2017) representing broad habitat and
climatic differences. While there is considerable correspon-
dence between the habitat and genetic groupings, they are
not identical, and also differ in the total number of sub-
populations recognized, likely reflecting the fact that genetic
groups capture post glacial history as well as current habitat
effects. We likely do not caprure the full extent of genetic
variation within these defined subpopulations, and empha-
size that in this study we aim to assess the potential for broad
intraspecific differences to influence SDM predictions.



We used Maximum Entropy Species Distribution
Modeling (MaxEnt ver. 3.4.1; Phillips et al. 2018) to model
S. acaulis current distribution using 1) all occurrences
together (species-level SDM), and separately for 2) occur-
rences within each genetic group (genetic intraspecific-level
SDMs) and 3) occurrences within each habitat group (habi-
tat intraspecific-level SDMs). We calibrated and projected
individual SDMs only in the polygon corresponding to that
subpopulation. We chose MaxEnt to create our SDMs, as it
is a common and well-performing algorithm for presence-
only data (Phillips et al. 2006, Elith et al. 2010, Merow et al.
2013). We elected to only model current distribution
(following Hallfors et al. 2016), as this allows the most
appropriate evaluation of which SDM type (species-level,
genetic intraspecific-level, or habitat intraspecific-level) can
best predict S. acaulis’ recorded geographic distribution and
population performance.

We employed 10-fold cross-validation MaxEnt runs
for each individual SDM with a jackknife test of variable
importance and response curves for environmental vari-
ables. To binarize the resulting P, of each run, we selected
the maximum test sensitivity plus specificity threshold in
MaxEnt, a commonly used and well-performing suitability
threshold that maximizes the sum of sensitivity and speci-
ficity (Liu et al. 2005). We used these thresholds to create
‘presence-background’ maps, which show cells as either pres-
ent (i.e. P, above threshold) or as background (i.e. P, below
threshold), for each SDM type. This allowed us to compare
the predicted binary ‘presence-background’ maps among
SDM types. We constructed these maps retaining only those
cells above the threshold in more than five of the replicates
per individual SDM (following Hallfors et al. 2016). We then
mosaicked maps across subpopulations to generate the final
presence-background and also P (as indicated by cloglog
output; Phillips et al. 2017) maps across the entire species
distribution area for species-level, genetic intraspecific-level,
and habitat intraspecific-level models. Given that output val-
ues are only relative to the modeled region and are dependent
on occurrence density and sampling design, we recognize
that comparing these values across models can be difficulc
(Merow et al. 2013).

Model performance

To test which SDM best predicts S. acaulis recorded dis-
tribution (hypothesis 1), we evaluated the predicted binary
presence-background maps with two types of validation
data. First, we employed the standard approach of using the
recorded S. acaulis occurrences used to calibrate the SDMs to
calculate sensitivity (proportion of correctly identified pres-
ences) for the species-level, genetic intraspecific-level, and
habitat intraspecific-level SDMs. However, since the occur-
rence data available is sparse in areas where S. acaulis com-
monly occurs, such as central Alaska, the Canadian tundra
and Russia, we also compared model performance to an
independently-derived distribution map. We used an existing

global S. acaulis distribution map (digitized terrestrial locations
from map 791 in Hultén and Fries (1986) to calculate standard
performance metrics of sensitivity, specificity (proportion
of correctly identified background points), and True Skills
Statistic (TSS =sensitivity +specificity — 1; Allouche et al.
2000) for each of the three SDM types. TSS is particularly
useful in comparing model accuracy (Allouche et al. 20006,
Shabani et al. 2016), whereas the commonly employed area
under the receiver operating curve (AUC) has been increas-
ingly criticized (Lobo et al. 2008, Jiménez-Valverde 2012,
Shabani et al. 2016).

Using an existing distribution map (Hultén and Fries
1986) allowed us to validate our models with data indepen-
dent from those used to calibrate our SDMs, a validation
approach that has yet to be employed in intraspecific-level
SDM studies (Table 1; Peterson et al. 2019). Due to the long-
lived nature and slow growth rates of S. acaulis, this 30-yr old
distribution map still reflects the habitats and climates rel-
evant for the species. Furthermore, this map has been shown
to be useful in other SDM work on plants in the Northern
Hemisphere (Alsos et al. 2012). We refined this large scale
and low precision map to include only biomes where S. acau-
lis is most likely to be found, thereby employing the same
criterion we used to filter S. acaulis occurrences (see ‘Species
occurrences above). This kind of filter has been shown to
greatly increase the accuracy of where a species is likely to be
found, illustrating its applicability to improve species distri-
bution maps (Ocampo-Pefiuela et al. 2016).

We dissected differences between SDM predictions in
three steps. First, we examined P___ correlations between the
species-level and intraspecific-level SDMs for each distinct
subpopulation to see where in the species’ range SDM type
influenced predictions. Second, to examine if climate differ-
ences between subpopulations cause SDM dissimilarities,
we compared how predicted 1) individual subpopulation
climate spaces (i.e. climate in cells predicted as present) and
2) subpopulation regional climate conditions (i.e. all cells
from occurrence and background points) differ between the
three SDM types. We focused on the two climate variables
identified as most important by MaxEnt’s analysis of variable
contribution and jackknife test of variable importance. Third,
we calculated Warren’s I (function ‘modOverlap’ in package
fuzzySim; Barbosa 2015), a statistic based on Schoener’s D
and Hellinger distance (Warren et al. 2008), to quantify
niche similarity. We computed this statistic to compare the
climate niches predicted by the species-level SDM with the
intraspecific-level SDMs for 1) the species entire range and 2)
individual genetic and habitat regions. As the habitat intra-
specific-level SDM projects to fewer cells than the other two
SDM types (Supplementary material Appendix 1 Fig. A5),
we used only those cells when computing Warren’s I between
the habitat SDM and the other two SDM types.

To testif P, _can predict S. acaulis population performance
(hypothesis 2), we fit linear mixed models (LMMs with func-
tion ‘lmer’ in package Ime4; Bates et al. 2015) on cushion
plant size using linear and quadratic P from each SDM
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type as predictor variables and a random effect of site. We
calculated additional model summary outputs with the pack-
ages ImerTest (Kuznetsova et al. 2017) and MuMIn (Bartén
2018). We log-transformed size to meet LMM assumptions
of residual distribution.

In order to test if facilitative interactions between benefi-
ciary species and S. acaulis can be predicted by P___ (hypoth-
esis 3), we fit LMMs on beneficiary species percent cover,
richness and diversity using linear and quadratic P, from
each SDM type as predictor variables and a random effect
of site. We log-transformed percent cover [log(cover+1)] to
meet LMM assumptions of residual distribution, a transfor-
mation that was not necessary for richness or diversity.

We performed all data manipulations (packages raster,
Hijmans 2017; sp, Pebesma and Bivand 2005; rgdal ver. 1.3-1,
Bivand et al. 2018) and data analyses in the statistical

environment R (ver. 3.5.1; R Core Team).

Results

We found that the genetic intraspecific-level SDM  pre-
dicts the highest proportion of true presences (sensitivity,
or cell overlap with recorded distribution) when compared
against both the S. acaulis occurrences used to construct the
models and the Hultén and Fries (1986) distribution map
(hypothesis 1; Supplementary material Appendix 1 Table
A3a). The genetic SDM also has the highest TSS value relative
to the habitat intraspecific-level and the species-level SDMs,
with the species-level SDM performing worst (Supplementary
material Appendix 1 Table A3a). The three SDM types yield
quite different presence-background (Fig. 2) as well as relative
probability of occurrence (P,) predictions (Supplementary
material Appendix 1 Fig. A4-A5). In contrast, the propor-
tion of predicted background points (specificity) was simi-
larly well predicted by all models (Supplementary material
Appendix 1 Table A3a). Niche similarity is also high between
SDM types, with Warren’s I ranging between 0.83 and 0.92
(Supplementary material Appendix 1 Fig. A4).

Examining prediction differences by genetic subpopu-
lation illustrates that the genetic intraspecific-level SDM
outperforms the species-level SDM in all subpopulations
except the Adantic (Supplementary material Appendix 1
Table A3b). For the European and American genetic groups,
the largest mismatches occur where the species-level SDM
predicts high P, while the genetic SDM predicts low P,
(Supplementary material Appendix 1 Fig. AG). Predicted
P .. between the species-level and habitat intraspecific-level
SDMs are generally more similar in the Palearctic realm
(Europe; Supplementary material Appendix 1 Fig. A7).
The species-level SDM generally overpredicts P in the
Palearctic realm and underpredicts in the Nearctic realm
(North America), broadly corresponding to better perfor-
mance by the species-level SDM in the Palearctic realm and
better performance by the habitat SDM in the Nearctic
realm (Supplementary material Appendix 1 Table A3c).
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Out of the four climate variables we used to construct
our SDMs, maximum temperature of the warmest month
(average percent variable contribution to MaxEnt models for
genetic SDM: 55%; habitac SDM: 59%) and temperature
seasonality (34%; 27%) are the two most important envi-
ronmental variables across the four and six separate geneti-
cally-based and habitat-based SDMs, respectively. These two
variables are also most important for the species-level SDM
(temperature: 33%; temperature seasonality: 67%). Jackknife
tests of variable importance in both training and testing gains
for each separate SDM also identified the variable with the
highest contribution as being most important in all but the
Nearctic Tundra biome.

Similarities in P, predictions between the species-level
SDM and each of the intraspecific-level SDMs correspond to
similarities in predicted climate niches corresponding to the
predicted presences (as defined by the maximum test sensitiv-
ity plus specificity threshold in MaxEnt). The climate space
for S. acaulis in the Adantic genetic group, where P, predic-
tions between the genetic intraspecific-level and global SDM
are most similar, shows the largest predicted climate niche
overlap compared to the other genetic groups (Fig. 3). This is
supported by Warren’s I for the Atlantic genetic group, which
is 0.90 between the two SDM types. The Beringian genetic
group also shows high niche similaricy (Warren’s 1=0.95),
whereas the European (Warren’s 1=0.76) and American
(Warren’s 1=0.75) show lower niche similarity between
SDM types. When compared to the species-level SDM, the
habitat SDM also shows the largest difference in predicted
climate spaces where similarity between P, predictions is
low, most notably in the Nearctic Tundra and Conifer Forests
biomes (Fig. 4). Niche similarity between SDM types, on the
other hand, is higher in the Nearctic realm (Tundra=0.92,
Mixed Forests=0.92, Conifer Forests=0.94) than in the
Palearctic ream (Tundra=0.85, Boreal Forests=0.81, Mixed
Forests=0.83). Furthermore, the range of available climate
conditions used to construct each of the intraspecific-level
SDMs ovetlap (Supplementary material Appendix 1 Fig. A8a,
¢) and the climate spaces of predicted presences is narrower
and more overlapping (Supplementary material Appendix
1 Fig. A8b, d). This illustrates that differences between the
intraspecific-level and species-level SDMs may not be due
primarily to distinct climates among the genetic or habitat
subpopulations.

SDM output only poorly predicts S. acaulis perfor-
mance (hypothesis 2) and strength of facilitative interactions
(hypothesis 3), and this very weak relationship (marginal R%
0.01-0.15) is not improved by fitting intraspecific-level SDM
P, . values. P values from the species-level SDM best predict
both . acaulis cushion plant size and beneficiary species per-
cent cover, with a peak at median to high P, _ (Supplementary
material Appendix 1 Table A4, Fig. 5a-b). The other mea-
sures of facilitative interaction strength, beneficiary species
richness and diversity, cannot be significantly predicted by
SDM output (Supplementary material Appendix 1 Table A4,
Fig. 5¢—d).
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Discussion

We critically evaluated the performance of three approaches
to model species distributions: a traditional species-level
SDM using a species-wide climate niche, and intraspecific-level
models based on either genetic groups or climatically-distinct
habitat types. We found that the intraspecific-level SDMs

decisively outperformed the species-level SDM in predicting
the distribution of S. acaulis, consistent with results from
the previous few studies that have made this comparison
(Table 1, Supplementary material Appendix 1 Table Al). In
particular, sensitivity is conclusively higher in our intraspe-
cific-level SDMs compared to the species-level models, as
also recently found by Lecocq et al. (2019). While to date
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few studies have included intraspecific differences in SDM
models (Table 1, Supplementary material Appendix 1 Table
Al; see also Schurr et al. 2012, Ehrlén and Morris 2015,
Pironon et al. 2018), the improved accuracy of intraspecific-
level SDM distribution predictions illustrates this as a prom-
ising approach. As we found that niche similarity is high
between SDM types, we emphasize that multiple evaluation
metrics, as well as a close examination of predicted climate
spaces, are needed to assess SDM performance and predic-
tion differences.

Using a detailed global trait dataset for the species, we also
found that SDM output poorly predict S. acaulis cushion size,
a measure of population performance, and facilitative inter-
action strength. Support for this prediction is not improved
with intraspecific-level SDMs. We observed more variability
in cushion size with increasing P, which could explain the
lack of a clear relationship. Such a pattern between popu-
lation performance and habitat suitability has, in fact, been
described in previous work (Hengeveld 1990, Brown 1995).
The traits we tested loosely follow an elevational pattern, with
largest plant size and strongest facilitative interactions found
at mid-elevations (Supplementary material Appendix 1 Fig.
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A9a-b), whereas P___ increases with elevation (Supplementary
material Appendix 1 Fig. A9¢c). However, model fit is neither
improved by adding elevation as a fixed effect to our LMMs
nor by substituting climate variables for P, as a predictor
variable (Supplementary material Appendix 1 Table A5, Fig.
A10). While the ability to predict species’ traits with P has
been examined before (Thuiller et al. 2009), recent work has
shown that such results need to be interpreted cautiously,
especially when considering species abundances (Dallas and
Hastings 2018, Santini et al. 2018) and demographic rates
(Thuiller et al. 2014, Cserg® et al. 2017, Pironon et al. 2018).
Although biotic interactions have been successfully mod-
eled on a geographic scale (Aratjo and Rozenfeld 2014) and
SDM predictions can improve when incorporating facilita-
tive interactions (Filazzola et al. 2018), our results indicate
that predicting biotic interactions from SDM output values
needs to be approached with caution.

We did not find that model performance simply increased
with greater subdivisions of the data, as the genetic SDM
with four groups outperformed the habitat SDM based on
six groups and calibrated on an overall smaller range (Fig. 2).
This suggests that, at least for S. acaulis, subpopulations based
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on habitat types or geographic regions may not best capture
intraspecific differences in responses to climate. Our results
imply that how a species is divided into subpopulations is
critical to SDM inference and accuracy. Given that only three
previous intraspecific-level SDM studies have compared mul-
tiple approaches to delineating subpopulations (Marcer et al.
2016), this needs to be examined in greater detail. It is espe-
cially surprising that none of these studies used independent
validation data with which to judge predictive quality. We
show that this can readily be done with a distribution map
independent of the digital occurrences used to calibrate our
models. This evaluation approach provided results in agree-
ment with the traditional approach of using the species’
occurrences used to calibrate the model. While model sen-
sitivity is lower when evaluating model performance against

a large scale and low precision map (Supplementary material
Appendix 1 Table A3), this approach ranks the models’ per-
formance in the same order. Further, even coarse distribution
maps may better capture portions of a species’ range that,
for whatever reason, may be underrepresented in occurrence
datasets, particularly for widespread and common species.
Indeed, this is what we see for S. acaulis, with limited occur-
rence data available in large portions of the species’ range (e.g.
central Alaska, Canada, Russia). We therefore discourage the
common practice of only validating SDM performance with
the occurrence data used to construct the models in the first
place, especially when that occurrence data does not repre-
sent the full extent of the species’ range.

Notably, while 73% of past intraspecific-level SDM stud-
ies attribute increased intraspecific-level SDM performance
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to local adaptation, most do not report results that allow for
an assessment of the importance of these differences or their
likely causes (Table 1, Supplementary material Appendix 1
Table A1), even though several other mechanisms could also
cause these improvements. First, if there are strong climate
differences in separately modeled regions, intraspecific-level
SDMs may fit correspondingly different climate spaces
(Meynard etal. 2017). In our study, subpopulations’ predicted
climate niches were substantially narrower and more over-
lapping than their regional climate spaces (Supplementary
material Appendix 1 Fig. A8), suggesting that differences
in P are not simply due to sharp distinctions between
regional climates. Second, differences in sample size (i.e.
recorded occurrences) between different regions may mean
that a species-level model may perform poorly for subpopula-
tions with lower sampling intensity due to swamping of the
model fit by data from better sampled regions (Pearman et al.
2010, Hillfors et al. 2016). Our study partially supports this
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explanation, as we see that unequal sampling intensity across
regions (Fig. 1) corresponds to differences between species-level
and habitat, but not genetic, intraspecific-level predictions.
Given that the majority of species likely have biased occur-
rence data (Meyer et al. 2016), intraspecific-level SDMs may
be useful as a way to control for bias in model fits, even when
there are not local differences in climate suitability.

We emphasize that SDMs themselves are not capable of
fully dissecting these different mechanisms, but examination
of the calibration data and model predictions can help suggest
their possible importance. In particular, dissimilarity in SDM
predictions can only indicate the potential for local adapta-
tion and resulting population-level climate response, which
would need to be confirmed with direct experimental work.
The next steps are to then explicitly incorporate local adap-
tation into predictions of range shifts with climate change
(for review see Peterson et al. 2019) according to well identi-
fied subpopulations, or by adopting a mechanistic approach



(Angert et al. 2011). In the case of S. acaulis, climate
manipulation experiments have found local adaptation
to temperature between populations corresponding to the
Beringian and American genetic groups (Peterson et al.
2018). Silene acaulis might also respond strongly to other
climatic drivers than the ones we examined, although
recent studies have identified temperature to be an impor-
tant climate variable for the species (Pironon et al. 2015,
Ferrarini et al. 2018, 2019).

Given that we found large inconsistencies between SDM
types, we emphasize that, when possible, subpopulations
should be modeled separately for more accurate predictions
and that the choice of how to define subpopulations needs to
be well-justified. Our results illustrate the necessity of exam-
ining potential intraspecific variation in responses to cli-
mate, which, if present, violates a foundational assumption
of SDMs built using a species’ full climatic niche. Species
traits or performance can differ with the various local cli-
mate conditions found within its range (Emery et al. 2015,
Amburgey et al. 2018) and predictions for locally mod-
eled populations often do not match those from species-
level models (Hillfors et al. 2016, Schwalm et al. 2016).
Practitioners using SDM outputs for conservation planning
should be particularly wary of predictions generated from
single SDMs using large scale distribution data, and aim to
compare outputs from multiple SDM types. Particular care
should also be taken with relating SDM output to species
traits, as this relationship does not hold in many systems
and, at least for S. acaulis, is not improved with better per-
forming intraspecific-level SDMs.
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