ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303531868

Addressing potential local adaptation in species distribution models:
Implications for conservation under climate change

Article in Ecological Applications - February 2016

DOI: 10.1890/15-0926

CITATIONS READS
81 628

8 authors, including:

Maria Hallfors Jishan Liao
i University of Helsinki University of Notre Dame
21 PUBLICATIONS 202 CITATIONS 18 PUBLICATIONS 471 CITATIONS
SEE PROFILE SEE PROFILE
Jason D K Dzurisin Grace C Wu
University of Notre Dame National Center for Ecological Analysis and Synthesis
16 PUBLICATIONS 581 CITATIONS 30 PUBLICATIONS 628 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject  Quercus garryana range dynamics View project

poject  CO-ADAPT View project

All content following this page was uploaded by Maria Hallfors on 30 June 2016,

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/303531868_Addressing_potential_local_adaptation_in_species_distribution_models_Implications_for_conservation_under_climate_change?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303531868_Addressing_potential_local_adaptation_in_species_distribution_models_Implications_for_conservation_under_climate_change?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Quercus-garryana-range-dynamics?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CO-ADAPT-2?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Haellfors?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Haellfors?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Helsinki?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Haellfors?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jishan-Liao-2?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jishan-Liao-2?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Notre-Dame?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jishan-Liao-2?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jason-Dzurisin?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jason-Dzurisin?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Notre-Dame?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jason-Dzurisin?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grace-Wu-22?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grace-Wu-22?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grace-Wu-22?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Haellfors?enrichId=rgreq-eb8f13adcd3c02bd006d3fd6b2e283ff-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUzMTg2ODtBUzozNzg2Mjc4NzYyNDU1MDRAMTQ2NzI4MzMyODE3NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Ecological Applications, 26(4), 2016, pp. 1154-1169
© 2016 by the Ecological Society of America

Addressing potential local adaptation in species distribution
models: implications for conservation under climate change

MaRIA HELENA HALLFORS,! JisHAN L1A0,2 JASON DZzURISIN,? RALPH GRUNDEL,> MARKO HYVARINEN,

1

KEevIN TowLE,2 GRACE C. Wu,* AND JEssicA J. HELLMANNZS:0

lBatany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 44, 00014 Helsinki, Finland

2Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame,
Notre Dame, Indiana 46556 USA
3US. Geological Survey, Great Lakes Science Center 1574 N 300 E Chesterton, Indiana 46304 USA

4Energy and Resources Group, 310 Barrows Hall, University of California at Berkeley, Berkeley, California, 94720 USA

SInstitute of the Environment, 1954 Buford Ave, St. Paul, MN 55108 University of Minnesota, USA

Abstract.  Species distribution models (SDMs) have been criticized for involving assump-
tions that ignore or categorize many ecologically relevant factors such as dispersal ability and
biotic interactions. Another potential source of model error is the assumption that species
are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat
a species as a single entity, although populations of many species differ due to local adapta-
tion or other genetic differentiation. Not taking local adaptation into account may lead to
incorrect range prediction and therefore misplaced conservation efforts. A constraint is that
we often do not know the degree to which populations are locally adapted. Lacking experi-
mental evidence, we still can evaluate niche differentiation within a species’ range to promote
better conservation decisions. We explore possible conservation implications of making type
I or type II errors in this context. For each of two species, we construct three separate Max-
Ent models, one considering the species as a single population and two of disjunct popula-
tions. Principal component analyses and response curves indicate different climate characteristics
in the current environments of the populations. Model projections into future climates indicate
minimal overlap between areas predicted to be climatically suitable by the whole species vs.
population-based models. We present a workflow for addressing uncertainty surrounding local
adaptation in SDM application and illustrate the value of conducting population-based models
to compare with whole-species models. These comparisons might result in more cautious
management actions when alternative range outcomes are considered.

Key words. biodiversity management; conservation effectiveness; environmental niche models; intraspecific
variation; Lycaeides melissa samuelis; model uncertainty, Primula nutans var. finmarchica; translocation.

INTRODUCTION

Correlative species distribution models (SDMs) are
used for inferring relationships between species and their
environment. They are commonly applied in ecological
studies, often to describe species’ niches and to inform
conservation planning (Bakkenes et al. 2002, McCormack
et al. 2010, Morueta-Holme et al. 2010, Renwick et al.
2011, Schwartz 2012, Guisan et al. 2013). Their use has
recently increased due to the improved availability of
data on species occurrences and projected climate
(e.g., Global Biodiversity Information Facility [data
available online]’ and WorldClim [Hijmans et al. 2005]),
as well as the development of new software platforms
and algorithms to analyze and synthesize these data
(Franklin 2010).

Manuscript received 20 May 2015; revised 3 September 2015;
accepted 8 September 2015; final version received 24 November
2015. Corresponding Editor: J. Franklin.
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SDMs (also called niche, envelope, or bioclimatic
models) have been criticized for simplifying or omitting
factors that influence the distribution of species, such as
traits controlling dispersal ability and biotic interactions,
and for assumptions of niche conservatism and of the
species being in ecological equilibrium with its environ-
ment (Guisan and Zimmermann 2000, Dormann 2007,
Aratjo and Peterson 2012, Early and Sax 2014). Several
of these shortcomings have been acknowledged and
investigated, including the importance of choosing the
right modeling algorithm, sample size, and environmen-
tal variables for an accurate prediction of the distribu-
tion (Stockwell and Peterson 2002, Heikkinen et al.
2006, Austin and van Niel 2011, Synes and Osborne
2011). These limitations, and the importance of drawing
appropriate conclusions from SDM results, need to be
addressed, especially when predicting future suitable
areas for a species and using SDMs for planning
conservation measures (Pearson and Dawson 2003,
Heikkinen et al. 2006, Dormann 2007, Franklin 2010,
Araujo and Peterson 2012).
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One potential source of error in SDMs that has been
largely overlooked is the effect of local adaptation and
the consequences of functional differences among popu-
lations within a species’ ranges. A common approach in
ecological analyses, including SDMs, is to assume that
all populations of a species respond homogeneously to
the range of environmental conditions experienced by
the whole species (Davis and Shaw 2001, Bolnick et al.
2003, Atkins and Travis 2010, Banta et al. 2012,
Fitzpatrick and Keller 2015). However, species vary
genetically across their range and populations can be
locally adapted with specialized climatic or other envi-
ronmental tolerances. If an SDM is constructed using
distribution data for the whole species, it will also treat
the species as an evolutionarily homogeneous entity over
its entire range (Hampe 2004) and therefore not take
into account possible population differences, including
local adaptation.

Several studies indicate that populations of some spe-
cies are adapted to local conditions (Davis and Shaw
2001, Bolnick et al. 2003, Fournier-Level et al. 2011,
Banta et al. 2012), including climate (Pelini et al. 2009,
O’Neil et al. 2014). Attempts have recently been made to
incorporate local adaptation and phenotypic plasticity
into SDMs when modeling suitable habitats under climate
change (Pearman et al. 2010, Benito Garzon et al. 2011,
Banta et al. 2012, Bocedi et al. 2013, Oney et al. 2013,
Romero et al. 2013, Homburg et al. 2014, Valladares et al.
2014) and studies indicate that there can be an effect,
although varying in magnitude and direction, of discrimi-
nating among populations in the modeling process.

This does not, however, mean that one should always
assume local adaptation in SDMs if populations of spe-
cies occupy apparently different environments, since
they may be phenotypically plastic. Nevertheless, with-
out extensive experiments, we cannot know whether
observed environmental differences among populations
have led to local adaptation (Kawecki and Ebert 2004,
Pelini et al. 2009, Vergeer and Kunin 2013, Kreyling
et al. 2014, O’Neil et al. 2014). While mechanistic or
individual-based process models can offer more detailed
insight on environmental requirements of species (sensu
Morin and Thuiller 2009), they also require species-
specific physiological parameters that are rarely avail-
able. Thus, we need additional cost- and time-effective
methods for testing the potential importance of popula-
tion differences. Such first-order approximations based
on simplified assumptions can serve as a basis for refined
investigations requiring more time and resources.
Previous studies have not compared the potential mag-
nitude of difference among populations that might lead
us to model populations separately when using SDMs
nor the conservation implications of incorporating or
ignoring local adaptation in SDMs.

Here, we use two case species to address the following
questions: (1) Does modeling geographically disjunt popu-
lations separately significantly alter SDM projections
compared to projections based on whole species analyses?

LOCAL ADAPTATION AND SDMS
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(2) Does considering population differences affect con-
servation recommendations and conservation strategies?
and (3) Can climatic variables inform subsequent field
experiments to detect and measure local adaptation?

METHODS
Study species

The Karner blue butterfly (Lycaeides melissa samuelis;
KBB) occurs in the Great Lakes and nearby regions of
North America, historically ranging from Minnesota,
USA, in the west to New Hampshire, USA, in the east
(Grundel et al. 1998, Forister et al. 2010). It is a feder-
ally listed endangered species in the USA whose larvae
feed on leaves of a single plant species, wild lupine
(Lupinus perennis). The KBB has declined, in part,
because its main habitats, savannas and barrens, have
been anthropogenically altered since the 19th century
(Forister et al. 2010). Populations are currently found
in Wisconsin, Michigan, and New York, have likely been
recently extirpated in Minnesota, Illinois, Indiana, and
Ontario, and have recently been reintroduced into Ohio
and New Hampshire (Fig. 1a). KBB populations have
been shown to be genetically different, at least in their
mitochondrial haplotypes (Gompert et al. 2006).

The Siberian primrose (Primula nutans) is a circum-
polar, perennial plant that mainly grows in seashore and
riverside meadows (Mikinen and Mikinen 1964, Kreivi
et al. 2011). The subspecies P. nutans ssp. finmarchica
occurs in northern Europe (Kreivi et al. 2006). Mikinen
and Miékinen (1964) divided this subspecies into two
varieties according to morphological and ecological
characteristics: P. nutans var. finmarchica occurs at the
shores of the Arctic Sea, while P. nutans var. jokelae
occurs by the Bothnian Bay in Finland and Sweden and
by the shores of the White Sea in Russia. However,
recent genetic studies have found the three main popula-
tions of the Siberian primrose (SP) to be similarly dis-
tinct from each other (Kreivi et al. 2011).

Both taxa are threatened and occur in geographically
separated populations with little gene flow among popu-
lations (Gompert et al. 2006, Kreivi et al. 2006). The
main populations of both species were possibly sepa-
rated into their geographically distinct populations dur-
ing the last glacial retreat (Mékinen and Mékinen 1964,
Gompert et al. 2008). Further, they have been suffi-
ciently studied (Grundel et al. 1998, Gompert et al. 2006,
Rautiainen et al. 2009, Kreivi et al. 2011) to provide
distributional data and biological information useful in
niche model interpretation. However, we do not know
if populations of these species are locally adapted.

Occurrence data

Occurrence data for the KBB (Fig. 1a) were combined
from site survey records, museum records, individual col-
lector records, and GBIF data (see footnote 7), giving
us 828 unique occurrence points. For SP distribution
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Fic. 1. Occurrence points were broken up into populations

as determined by PCA, see Methods: Grouping of populations and
Results. (a) Symbols are x, KBB-East population; circle, KBB-
West population. (b) Symbols are x, SP-North population;
circle, SP-South population. The whole species models used all
occurrence points of each species (KBB-Whole and SP-Whole).

data (Fig. 1b), we combined the occurrence data obtained
from GBIF, Kastikka (Finnish plant distribution data-
base; Lampinen et al. 2012), and Hertta (Finnish
Environment Institute, unpublished data), as well as infor-
mation on occurrences in Russia based on herbarium
specimens (from collections in Helsinki [H] and Turku
[TUR]; acronyms after Thiers, available online).® We also
added some distribution points in Russia according to
the distribution map by Hultén and Fries (1986), giving
us 210 occupied cells. For both species, one grid cell
(30 arcsec) was either occupied or not, irrespective of
whether many occurrence points fell into a specific grid
cell.

Study region

We created the study domain using a 1000-km buffer
around the occurrence points for each species. This mask
included all occurrences of the species yet lessened
extrapolation, i.e., estimation outside observed condi-
tions, when projecting into other climate conditions and

8 http://sweetgum.nybg.org/ih/
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larger domains, and excluded bioclimatic regions that
were spuriously similar to where the species occurred.
A common recommendation for choosing the study area
is to include areas to which the species could disperse
(Merow et al. 2013). In this study, we considered con-
servation under climate change, including possible use
of assisted migration to move species to climatically suit-
able regions (McLachlan et al. 2007, Hallfors et al. 2014).
As a consequence, we not only needed to consider areas
where the species could disperse to on its own in the
near future, but also areas where it might migrate under
longer climate changes and sites that might be candidates
for assisted migration (also called managed relocation).

Climatic data

Data on current climatic conditions (average climate
for 1950-2000; Hijmans et al. 2005), represented by 19
bioclimatic variables, were obtained from the WorldClim
dataset (Hijmans et al. 2005). The spatial resolution of
both the current and future climate data was 30 arcsec.
Future climate data were obtained from CCAFS (Climate
Change, Agriculture and Food Security; Ramirez and
Jarvis 2008). This dataset has been statistically down-
scaled from climate models for the Fourth report of the
International Panel for Climate Change (IPCC 2007).
The Fifth IPCC report (IPCC 2014) contained updated
climate projections; however, the climate projection data
available at 30-arcsec spatial resolution were not available
for multiple decades. We used seven time periods during
the 21st century to generate future distribution projec-
tions. Each time frame or decade corresponded to a 30-yr
average, e.g., 2040s is given by 2030-2059. We used
predictions for future climate calculated according to the
UKMO-HadGEMI1 general circulation model and the
A1B scenario, which were the most recent climate
scenarios available at the time we conducted this present
study (Nakicenovic and Swart 2000). This scenario
describes a world with rapid economic growth using both
fossil and non-fossil energy, and reflects current CO,
growth rates (Le Quéré et al. 2009).

We performed a variance inflation factor analysis
(VIF) to help eliminate highly correlated variables as
SDM predictors (Merow et al. 2013) Although machine
learning methods such as MaxEnt can cope with some
degree of collinearity (Elith et al. 2011), we elected to
use variable importance and response curves to inform
future experiments (see study question 3 in Introduction).
If two environmental variables are highly correlated, the
marginal response curves can be misleading. Therefore,
we excluded correlated variables prior to calibrating
models. For the analysis, we calculated Pearson’s correla-
tion values for all 19 bioclimatic variables from a sample
of 100000 locations within both study regions (see
Appendix S1: Table S1 for correlation values). We then
ran an ordinary least squares regression that held one
variable as dependent and all the other variables as
explanatory. We calculated variance inflation factors
(VIF) for each variable and subsequently deleted the
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variable with the highest VIF value if it was greater than
10 and repeated the whole procedure until all VIF values
were less than 10 (Craney and Surles 2002, O’Brien 2007).
We retained eight variables for each species (Table 1).

Grouping of populations

We used principal components analysis (PCA; Abdi
and Williams 2010) to explore whether occurrences of
the species are segregated by climatic variables and to
identify potential climatically distinct populations. We
used the PCA function in the R package FactoMineR
(Lé et al. 2008) to calculate principal components using
the entire set of 19 variables. We used the first two prin-
cipal components and the 95% confidence interval of
clustering, together with knowledge of the taxonomy
and the spatial genetic structure of the species (Gompert
et al. 2006, Kreivi et al. 2011), to define the populations
for this study. KBB occurrence points were divided into
western and eastern populations (KBB-West and KBB-
East; Results; Fig. 1) and the SP into southern and
northern populations (SP-South and SP-North; Fig. 1).
The whole species are referred to as KBB-Whole and
SP-Whole. To inform our third research question, which
aimed to identify key climatic variables that differed
between populations and to inform experiments testing
local adaptation, we also conducted PCA using uncor-
related climatic variables.

TABLE 1.
variables included in each model.

LOCAL ADAPTATION AND SDMS
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Constructing SDMs

We constructed separate SDMs for the two popula-
tions of each species (KBB-East, KBB-West, SP-South,
and SP-North) in addition to an SDM for each species
as a whole (KBB-Whole and SP-Whole). Models dif-
fered in number of distribution points (KBB-Whole,
828; KBB-East, 355; KBB-West, 473; SP-Whole, 210;
SP-South, 150; and SP-North, 60). Different sample
sizes may affect the comparison of models. However,
removing information through data point deletion is not
necessarily a robust alternative and does not eliminate
the need to model populations separately if they are
locally adapted.

We used MaxEnt (Phillips et al. 2006) to model species
distributions, as it is a commonly used SDM algorithm
for presence-only data (Franklin 2010, Merow et al.
2013), and it has also been shown to perform well in
comparisons among different algorithms (Elith et al.
2006, Franklin 2010). Although ensemble approaches in
SDM have recently been favored (Aratjo and New
2007), we used one algorithm, one set of climatic param-
eters, and one climatic projection based on one general
circulation model and one carbon emissions scenario.
This enabled us to concentrate on the differences that
the species vs. population approaches produced.

We used 20% of the occurrence data for testing the
models. We used ten-fold cross validation, thus

Index for variable abbreviations and table of variable importance (permutation importance in MaxEnt model) of

Variable KBB-Whole KBB-East KBB-West SP-Whole SP-North SP-South
AMT biol  Annual mean temperature 4.8 19 10.3
MDR bio2  Mean diurnal range 1.4 1.2 1.7 2.7 1.3 59
IT bio3  Isothermality 0.9 0.5 0.6
TS bio4 Temperature seasonality 9.6 11.2 1.9
TWaM bio5 Max. temperature of warmest
month
TCM bio6  Min. temperature of coldest
month
TAR bio7 Temperature annual range
TWeQ  bio8 Mean temperature of wettest 4.5 16.9 1.8 1 6.3 2.5
quarter
TDQ bio9 Mean temperature of driest 4 12 1.4 27.3 57.4 1.1
quarter
TWaQ  biol0 Mean temperature of warmest 70.5 27.9 47.9
quarter
TCQ bioll Mean temperature of coldest
quarter
AP biol2 Annual precipitation - .
PWeM  biol3 Precipitation of wettest month 2.2 7 2.4
PDM biol4 Precipitation of driest month
PS biol5 Precipitation seasonality 6.2 12.6 40.3 0.4 0.3 0.9
PWeQ  biol6 Precipitation of wettest quarter
PDQ biol7 Precipitation of driest quarter
PWaQ  biol8 Precipitation of warmest quarter 1.7 11.2 2.7 62.1 14.5 75.9
PCQ biol9 Precipitation of coldest quarter 0.9 0.7 2.7

Note: Variable importance higher than 20 in bold.
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obtaining 10 models and 10 projections for each species.
We converted the probability of habitat suitability to
binary outputs of suitable and unsuitable areas using
the optimal threshold of maximum sensitivity plus speci-
ficity, striking a balance between sensitivity and specific-
ity (Liu et al. 2005). For each species and population,
this was conducted for all 10 models, giving us 10 pres-
ence—absence maps. We then used a majority vote
approach to determine the final presence—absence map:
the cell was considered suitable in the final map if more
than five models predicted it to be suitable. The model
performance was checked using the area under the
receiver operating characteristics curve (AUC; Jiménez-
Valverde 2012) for the ten models used to obtain one
consensus prediction. We report the mean and standard
deviation of AUC for each suite of ten models (see
Results). Since we were not comparing the performance
of different models, this measure was suitable for our
purpose, although concerns have been recognized for
using AUC as the only measure of model performance
(Lobo et al. 2008).

To understand which climatic variables may be
important and differ by population (see study question
three in Introduction), we used the permutation impor-
tance measure in MaxEnt to assess the relative contribu-
tion of each environmental variable in determining the
predicted distribution of the modeled entity (Phillips
2006). Response curves of each variable indicate the
response of the species (or population) to different vari-
able values (Phillips 2006), i.e., the relative probability
that a cell with a certain variable value is suitable for
the modeled entity. We identified and examined response
curves of the most important variables in the models
and PCA.

Niche similarity tests

To inform study question one (see Introduction) and
evaluate the representativeness of the whole-species
models for identifying suitable conditions for each
population and whether this changed over time, we
performed a niche similarity test. Using ENMTools
(Warren et al. 2008, 2010), we measured niche similarity
between the mean probabilities of occurrence from ten-
fold cross validation under all time periods of all three
models for both species. We quantified niche similarity
using two measures: Schoener’s D (Shoener 1968) and
the 7 statistic (a derivative of Hellinger’s distance; see
Warren et al. 2008, 2010 for additional details). Both
metrics range from 0 (species have completely discord-
ant niches) to 1 (species have identical niches). High
values of these metrics between the predictions of the
whole-species model and that of the two population
models indicate that they are predicting different areas
of future occupancy. Changes in the metrics over time
illustrate the degree to which the whole species model
can or cannot represent the climatic niches of the con-
stituent populations.

MARIA HELENA HALLFORS ET AL.
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Evaluation of conservation implications

To evaluate the effects of the two approaches
(modeling species as a whole or populations sepa-
rately) on conservation decisions (see study question
two in Introduction), we used the binary suitability
maps (suitable vs. unsuitable cells; Figs. 3a and 4a;
Appendix S1: Fig. S2) to devise broad conservation
plans. We compared the negative and positive effects
of possible conservation decisions made under cli-
matic local adaptation of populations vs. the species
not being differentiated into populations, assuming
we knew which phenomenon was correct and which
incorrect.

REsuLTS
Delineating populations

KBB showed distinct clustering in PCA (Fig. 2a; vari-
able contribution in Appendix S1: Table S2), and we
divided the KBB occurrences into two populations
according to this. Two distinct groups were identifiable:
the eastern population (KBB-East) consisted of occur-
rences in Illinois, Indiana, Michigan, Ohio, New York,
and New Hampshire in the USA and Ontario of Canada.
The western population (KBB-West) consisted of occur-
rences in Minnesota and Wisconsin (Figs. la and 2a).
No single variable dominated the PC1 axis (all contrib-
uted <10%; Appendix S1: Table S2) whereas the PC2
axis was dominated by temperature of warmest month
(TWaM), temperature of warmest quarter (TWaQ), and
temperature of wettest quarter (TWeQ); together con-
tributing >50% of the PC axis; index of abbreviations
in Table 1).

The SP occurrences did not form clusters that were
as well separated (Fig. 2b; variable contribution in
Appendix S1: Table S2). However, some clustering was
apparent on the combination of PC1 (dominated by
and contributing with >50%: precipitation seasonality
[PS], precipitation of coldest quarter [PCQ], precipita-
tion of driest quarter [PDQ], precipitation of driest
month [PDM], and annual mean temperature [AMT])
and PC2 (dominated by and contributing with >50%:
temperature annual range [TAR], temperature season-
ality [TS], and mean diurnal range [MDR]). This clus-
tering loosely follows the taxonomic division of the
varieties (Mékinen and Mékinen 1964). Additionally,
there is probably minimal gene flow among the geo-
graphically distinct populations (by the Bothnian Bay,
White Sea, and Arctic Sea; Kreivi et al. 2011).
Therefore, we chose not to assign occurrences from
the same geographic area to separate populations for
the study. We grouped them into the southern and
northern populations, which corresponded to var.

jokelae (occurrences by Bothnian Bay and White Sea)

and var. finmarchica (occurrences by the Arctic Sea),
respectively (Fig. 1b; SP-South and SP-North, respec-
tively). Although SP populations could have been
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defined based on other PCA clustering patterns, delin-
eating them into the two populations described here
respects taxonomy and reflects how their geographical
locations result in probable reproductive barriers
(Kreivi et al. 2011).

Species distribution models

All mean testing AUC values for the models were
higher than 0.95, which suggests that the model was able
to distinguish between presence and background points
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similar conditions relating to precipitation during the
wettest time of the year.

In the PCA, precipitation of coldest quarter (PCQ),
precipitation seasonality (PS), temperature of wettest
quarter (TWeQ), mean diurnal range (MDR), and
isothermality (IT) were important for distinguishing the
SP populations. The modeled responses (Appendix S1:
Fig. S4) of the populations differed for all of these vari-
ables, except for PS, for which responses between popula-
tions was similar. MDR, IT, TWeQ, and PS did not
correlate strongly (>0.9) with any other variable. PCQ
correlated strongly with several other variables that
related to different aspects of precipitation (Appendix
S1: Table S1). Therefore the populations might also expe-
rience different precipitation regimes in their current
distribution.

Discussion

Population-specific models describing climatically suit-
able areas for the populations of KBB and SP differed
significantly from each other within a species and from
the whole species model, suggesting that population-
specific climatic conditions can be important in modeling
species distributions. There was no overlap between the
projected population models of the KBB and a slight
overlap between the SP population projections. This may
reflect the biology of the species, but it may also be an
artifact of the modeling process caused by, for instance,
different samples sizes and background points, compli-
cated interactions between variables, or overfitting of the
model. Investigating this is beyond the scope of this paper,
but it could be studied using, e.g., sensitivity analysis,
virtual species (LeRoy et al. 2015), or investigating the
presence of non-analogue climates (Williams et al. 2007).

The PCA results indicated clearer environmental
differences between the KBB populations than between
the SP populations, which is reflected in the SDMs.
Therefore, our population delineation may have affected
the difference in overlap between the species. All SDMs
predicted some degree of geographical shift in suitable
sites as climate change proceeds; however, suitable area
for KBB-East and SP-South would remain in close prox-
imity to the current distribution until the late 21st cen-
tury. The models for KBB-West and SP-South indicate
loss of suitable conditions within their current distribu-
tion. However, if the study area covered a larger area
further to the north, the SP-Whole model would likely
identify more suitable locations. For the SP, expanding
the study area northwards would probably have mar-
ginal effect because of the lack of terrestrial area to the
north.

As would be expected from the PCA results, the niche
similarity tests indicated that the populations of each
species occupy different niches (Fig. 5). There are some
changes in niche similarity over time, e.g., a substantial
increase in all niche similarities of the SP by the 2040s.
This may be caused by the suitable climatic conditions
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left in northernmost Europe to which both SP popula-
tions are suited. Why climate is expected to change in
this way, however, is beyond the scope of this paper.
Generally, the climatic similarity in the inter-population
model comparisons are consistently lower than the simi-
larity indicated by any of the comparisons of population
models to the whole species model. The main divergence
can be seen for the comparison of the whole species
model projection to that of the population model with
fewer distribution points. The KBB-East and SP-North
projections become less similar to the whole species pro-
jection with time, compared to the KBB-West and SP-
South respectively. This indicates that the whole species
models fail to represent climatically suitable areas for
the populations and thus may not properly describe the
future suitable areas for them. This emphasizes the need
to study the basis of niche differences among popula-
tions, including local adaptation. The potential impor-
tance of such local adaptation can be explored with
SDMs.

An important benefit of whole-species vs. population
modeling is its power to guide experiments to detect
functional differentiation and local adaptation.
Specifically, the variable importances indicated by
MaxEnt give some directions for identifying experimen-
tal variables in possible experiments on local adaptation
between the populations. PCA also can be helpful in this
regard, as it indicates what variables drive the differences
between populations. MaxEnt (or other SDMs), how-
ever, has the added value of measuring variable impor-
tance for each population. If populations of KBB were
functionally different in their two climatic niches, i.e.,
locally adapted, we predict that experiments manipulat-
ing seasonality, summer precipitation, and winter tem-
perature would have the highest probability of yielding
differences between populations. Experiments on local
adaptation for the SP should concentrate on manipula-
tion of conditions relating to temperature and changes
in temperature during the day and year as well as condi-
tions relating to precipitation regime over the year. Other
parameters not included in this study may, however, also
be important.

Implications for conservation

Failing to take population-level differences into
account could lead to erroneous management decisions
if populations are locally adapted. The populations of
both case study species occupy different climatic envi-
ronments according to the PCA, MaxEnt models, and
niche similarity tests conducted in this study. If the
populations have adapted to these differing conditions,
intraspecific variation could be relevant when planning
conservation of the species. Experimental studies are
needed to disentangle this, but in lack of such informa-
tion, readily applicable SDMs may offer one of the best
tools to gain insight into the potential importance of
niche divergence under climate change.
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(KBB-Whole, 0.953 [SD = 0.006]; KBB-East, 0.977
[0.005]; KBB-West, 0.976 [0.002]; SP-Whole, 0.977
[0.011]; SP-South, 0.983 [0.02]; SP-North, 0.998 [0.006]).

Until mid-century, the predicted suitable area of both
whole species models generally overlapped with that of
the population-differentiated models, and the popula-
tion projections coincided with different parts of the
whole species prediction (projections for 2020s, 2050s,
and 2080s in Figs. 3a and 4a; all time periods in
Appendix S1: Fig. S2). After mid-century, this overlap
continued to be prominent for the SP, while all KBB
models predicted mostly different, i.e., non-overlapping,
areas to be suitable (Figs. 3c and 4c). Across all time
periods, KBB-West and KBB-East predictions never
overlapped with each other (Fig. 3a), while SP-South
and SP-North predictions overlapped minimally (Fig. 4a;
5.3% overlap in current climate, 12.6% in 2020s, 17.3%
in 2030s, 22.0% in 2040s, 26.1% in 2050s, 20.8% in 2060s,
9.4% in 2070s, and 5.1% in 2080s). The number of pro-
jected suitable cells based on both SP population models
were approximately equal to the predicted number of
suitable cells of the SP-Whole (Fig. 4b), whereas the
KBB population models together predicted fewer suit-
able cells than KBB-Whole (Fig. 3b). Towards the end
of the century, the amount of suitable climatic area
declined according to all models and disappeared from
the study region altogether for KBB-West. The models
also differed in their prediction of loss of current distri-
bution area. KBB-East retained some of its current area
while KBB-Whole and KBB-West lost all of its current
distribution (Fig. 3c). SP-North lost suitability in all
current areas while for the SP-Whole and SP-South some
were retained, although the number of cells decreased
during the century (Fig. 4c).

Niche similarity test

By using niche similarity tests, we compare how well
the suitable climates of the modeled taxonomic units
(populations or species) are represented by that of the
other taxonomic units. Although the niches of the mod-
eled units do not change, the degree to which they are
represented in different time periods vary and this is
captured by the test. Niche-similarity measures derived
from the comparison of the modeled suitable area under
current climate for the KBB and SP populations were
low (KBB-West and KBB-East, I = 0.1; Fig. 5a; plot of
D values in Appendix S1: Fig. S3b; SP-South and SP-
North, 7 = 0.09; Fig. 5b). The similarity measurement
of each of the two populations compared to the whole
species was high, however (KBB-West vs. KBB-Whole,
1=10.70; KBB-East vs. KBB-Whole, 7 = 0.68; SP-North
vs. SP-Whole, 7 = 0.68; SP-South vs. SP-Whole, 71=0.71).

We also measured similarity of projected suitability
probabilities over time (Fig. 5; plot of D values in
Appendix S1: Fig. S3). For the KBB, the values for the
population vs. whole species comparison fluctuated over
the century and by the 2080s, KBB-West was roughly as
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similar to KBB-Whole (I = 0.66 in 2080s), as it was in
the current projection (I = 0.70 in current). In contrast,
KBB-East differentiated itself from KBB-Whole
(1 =0.56 in 2080s). The two KBB populations’ projected
areas became more similar starting from mid-century
(KBB-West vs. KBB-East in 2080s, 7 = 0.19). For the
SP, all comparisons showed higher similarity by the 2040s
(Fig. 5b). However, niche similarity, i.e., similarity in
projected areas, for SP-Whole and SP-North decreased
in the beginning of the century, increased during the
2040s, and ended up at the same level as in current cli-
mate in the 2080s (SP-North vs. SP-Whole in 2080s,
I = 0.65; SP-South vs. SP-Whole, I = 0.88). In contrast,
the SP-Whole vs. the SP-South comparison rose. The
population comparison values stayed within the medium
range; however, they obtained higher values at the end
of the century than that they had in the beginning of
the century (Fig. 5b; SP-South vs. SP-North in 2080s,
I=0.38).

Important variables

To understand what climatic conditions may be driv-
ing potential local adaptation and to inform possible
future experiments of local adaptation, we identified the
most important variables according to the models’ per-
mutation importance (Table 1) and PCA on VIF vari-
ables (Appendix S1: Table S2, Fig. S1). Response curves
produced in the MaxEnt modeling process are in
Appendix S1: Fig. S4. As the response curves represent
how the predicted response changes for different values
of the variable, while keeping all other climatic variables
in the model at their average sample value, the response
is context-specific and would change based on the set of
covariates used in the same model. Also, as we did not
include correlated variables, we cannot be sure that the
omitted variables are not actually the ones governing
the distribution of the species (Braunisch et al. 2013,
Dormann et al. 2013). Therefore, we also discuss
strongly correlated variables (>0.9; Appendix S1: Table
S1) because they may differ between the populations in
a similar way to the main variable.

Karner blue butterfly.—The most important variable
(explaining > 20% of the model; Table 1) in the KBB-
Whole model was temperature of the warmest quarter
(TWaQ). All models of the KBB show a similar response
curve for TWaQ (Appendix S1: Fig. S4), with a peak at
around 20°C. TWaQ correlated strongly with annual
mean temperature (AMT) and temperature of the
warmest month (TWaM), of which the latter was
removed prior to the modeling process. For KBB-West,
precipitation seasonality (PS) was also important. The
two population models showed the highest suitability
within different ranges of PS, which suggested that the
populations occupy separate climatic conditions
regarding PS, with the KBB-West experiencing more
seasonality in precipitation compared to KBB-East
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(Appendix S1: Fig. S4). However, strong negative
correlations with precipitation of driest month (PDM),
precipitation of driest quarter (PDQ), and precipitation
of coldest quarter (PCQ) were noted. Precipitation
during winter could therefore also differ for the
populations.

In the PC analysis, temperature seasonality (TS),
mean temperature of driest quarter (TDQ), and pre-
cipitation of warmest quarter (PWaQ) were important
for distinguishing the populations of the KBB, and
the modeled responses of the populations differed for
these three variables (Appendix S1: Fig. S4). The
populations experience different TS, with KBB-West
experiencing more seasonality in temperature than
KBB-East. TS correlated strongly with temperature
of coldest month (TCM) and temperature annual
range (TAR). Both relate to seasonality. TDQ and

PWaQ did not correlate strongly (>0.9) with other
variables.

Siberian primrose.—The two most important vari-
ables in the SP models were mean temperature of driest
quarter (TDQ); for SP-Whole and SP-North) and pre-
cipitation of warmest quarter (PWaQ; for SP-Whole
and SP-South). The response of TDQ was similar for
all the models (Appendix S1: Fig. S4). SP-South had
a slightly broader positive response ranging from
about —10°C to 10°C, however, while the response of
the SP-North was high at values between approxi-
mately —8°C and 8°C. TDQ did not correlate strongly
(>0.9) with any other variable, while PWaQ, the
response of which is similar for all models, correlated
strongly with precipitation of wettest month (PWeM).
This can indicate that the populations experience
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To explore the conservation implications of either
taking the possibility of local adaptation into account
or ignoring it, we compare the risks of making a type I
or type II error in this context (Fig. 6). When taking
local adaptation into account in formulating SDMs with
lack of experimental evidence, there are two opposing

assumptions that can be made: (1) the populations are
locally adapted, or (2) there is no relevant local adapta-
tion. Assumption (1) implies using population-based
models and drawing up a corresponding conservation
strategy A (Fig. 6), while assumption (2) leads the con-
servationist to use a whole species model and
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conservation strategy B. Either assumption may be
wrong, which would lead to us making a type I error
(assuming local adaptation where there is none) or type
II error (assuming no intraspecific differences when
populations actually are locally adapted; Fig. 6).
However, the two conservation strategies (A and B) can
be more or less detrimental if they were the wrong choice.

For the KBB, implementation of a conservation strat-
egy based on population models (assuming local adapta-
tion; strategy A) could proceed by ex situ conservation
(off-site, e.g., in a zoo) of KBB-West, as suitable climatic
conditions for it disappear altogether, and assisted
migration of KBB-East to new climatically suitable
areas. If our assumption is wrong, and there is no sub-
stantial difference between the populations, we would

have made a type I error. In this case, we would have
protected part of the species ex situ and assisted another
part in its migration, however, not necessarily to the
most favorable areas. The ex situ conserved individuals
may still be used for reintroductions or assisted migra-
tions. A conservation strategy based on the whole-
species model (assuming no local adaptation; strategy B)
could involve assisted migration to the new suitable
areas in Canada. If this underlying assumption later
turns out to be wrong, i.e., the populations turn out
to be locally adapted, we have made a type II error.
We would have assisted the species in its migration
northward, but the locally adapted populations would
have preferred conditions elsewhere, e.g., southwards in
the case of KBB-East.
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For the SP, a population-based strategy could entail
protecting SP-South in situ (on site; in its current loca-
tion) for as long as possible and using assisted migration
to move SP-South individuals to where SP-North cur-
rently occurs, as well as to other areas becoming climati-
cally suitable in the northeastern part of the study

region. We could assist SP-North in its migration by
moving representatives further north. If research later
indicates that the populations are not locally adapted,
this conservation strategy may still be beneficial since
the whole-species model also indicates that the new
receiving areas are suitable. We may, however, regret
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having assisted SP-South in its migration into the range
of SP-North, since the northern population could have
remained in the area, and we may have introduced
pathogens or caused interbreeding of the populations,
leading to loss of genetic diversity in other aspects than
climatic adaptation. A whole species-based conserva-
tion strategy could consist of in situ conservation in all
current areas and assisted migration of various repre-
sentatives of the species to new suitable areas further
north and towards the east. If we later discover
that the populations are locally adapted, this conserva-
tion strategy may prove disadvantageous. Protecting

SP-South in situ would also have served the purpose in
this case, but the current areas of the SP-North would
not have remained suitable. Instead, it would have
suited SP-South better. Depending on what source of
individuals was used in the assisted migration project,
the populations may have been introduced to incorrect
areas.

One could argue that the local adaptation assump-
tion and resultant conservation strategies are more
cautious and the type I error (assuming local adapta-
tion where there is none) therefore is less detrimental.
This could be especially relevant for the SP, since the
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F1c. 7. Workflow for local adaptation consideration in conservation planning using SDMs.

population models distinguish different areas of the
whole species model as suitable for the specific popula-
tion, instead of pointing to additional ones. Nevertheless,
if the risks involved with both errors are high and
knowledge on local adaptation is lacking, combining
aspects of both conservation strategies may be the best
way forward until we have gained further information
through experiments that can give a more mechanistic
understanding of species responses to different envi-
ronmental conditions (Morin and Thuiller 2009). For
example, in the case of SP, such combined conservation
efforts might include in situ conservation combined
with assisted migration based on the whole-species
model, through sourcing and distributing seed from SP
locations that, based on the population models, most
likely will be suitable for a specific receiving area.
Opting for one main conservation strategy can be risky,
and there may be more uncertainty involved in extinc-
tion predictions of SDMs than predictions of new suit-
able area (Schwartz 2012). Therefore, there is reason
to be cautious with decisions involving discontinuing
in situ conservation.

Workflow for considering local adaptation

To allow effective use of available SDM tools in con-
servation of species, managers could benefit from first-
order approaches that can identify cases where the
populations of a species may differ from each other
and thus may need individual conservation attention,
separate modeling, or diverse conservation strategies. We
have identified important climatic parameters for design-
ing experiments on local adaptation in two species and

illustrated how PCA and SDMs can be used to help
guide experimental design for mechanistic experimenta-
tion that can aid in confirming the presence of local
adaptation. Until such knowledge is obtained, however,
SDMs continue to be useful tools for informing conser-
vation. Nevertheless, SDMs should be used mainly as a
first-order approximation and not as a direct and sole
guide for decisions.

We suggest a workflow for situations where local adap-
tation between populations is likely but unknown
(Fig. 7). The first step involves recognizing cases when
local adaptation may require conservation attention. It
is reasonable to assume that many species of conserva-
tion concern would possess varying degrees of adapta-
tion to their local environments. Such cases include
species with spatially distinct populations, reproductive
isolation (Frankham et al. 2012), steep environmental
gradients, species with taxonomic confusion (Kawecki
and Ebert 2004), subspecies (Oney et al. 2013), or endan-
gered species that are discontinuous across their range.
If these species seem to inhabit separate climatic environ-
ments across their range, this may be an indication that
they could be locally adapted. Until experiments, such
as translocation trials, elucidate existence of local
adaptation, we suggest modeling uncertain populations
separately in addition to whole-species modeling. By
comparing the effects of making a type I or type II error,
risks can be taken into account and minimized. In many
cases, incorporating aspects of both scenarios may be
beneficial, especially when the risks are high. By applying
cautious conservation and acknowledging the possibility
of local adaptation, we can avoid losing biodiversity due
to ill-advised decisions.
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