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Introduction

Correlative species distribution models (SDMs) are 
used for inferring relationships between species and their 
environment. They are commonly applied in ecological 
studies, often to describe species’ niches and to inform 
conservation planning (Bakkenes et al. 2002, McCormack 
et al. 2010, Morueta-Holme et al. 2010, Renwick et al. 
2011, Schwartz 2012, Guisan et al. 2013). Their use has 
recently increased due to the improved availability of 
data on species occurrences and projected climate 
(e.g.,  Global Biodiversity Information Facility [data 
available online]7 and WorldClim [Hijmans et al. 2005]), 
as well as the development of new software platforms 
and algorithms to analyze and synthesize these data 
(Franklin 2010).

SDMs (also called niche, envelope, or bioclimatic 
models) have been criticized for simplifying or omitting 
factors that influence the distribution of species, such as 
traits controlling dispersal ability and biotic interactions, 
and for assumptions of niche conservatism and of the 
species being in ecological equilibrium with its environ-
ment (Guisan and Zimmermann 2000,  Dormann 2007, 
Araújo and Peterson 2012, Early and Sax 2014). Several 
of these shortcomings have been acknowledged and 
investigated, including the importance of choosing the 
right modeling algorithm, sample size, and environmen-
tal variables for an accurate prediction of the distribu-
tion (Stockwell and Peterson 2002, Heikkinen et  al. 
2006, Austin and van Niel 2011, Synes and Osborne 
2011). These limitations, and the importance of drawing 
appropriate conclusions from SDM results, need to be 
addressed, especially when predicting future suitable 
areas for a species and using SDMs for planning 
conservation measures (Pearson and Dawson 2003, 
Heikkinen et  al. 2006, Dormann 2007, Franklin 2010, 
Araújo and Peterson 2012).

Addressing potential local adaptation in species distribution  
models: implications for conservation under climate change

Maria Helena Hällfors,1 Jishan Liao,2 Jason Dzurisin,2 Ralph Grundel,3 Marko Hyvärinen,1  
Kevin Towle,2 Grace C. Wu,4 and Jessica J. Hellmann2,5,6

1Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 44, 00014 Helsinki, Finland
2Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame,  

Notre Dame, Indiana 46556 USA
3U.S. Geological Survey, Great Lakes Science Center 1574 N 300 E Chesterton, Indiana 46304 USA

4Energy and Resources Group, 310 Barrows Hall, University of California at Berkeley, Berkeley, California, 94720 USA
5Institute of the Environment, 1954 Buford Ave, St. Paul, MN 55108 University of Minnesota, USA

Abstract.   Species distribution models (SDMs) have been criticized for involving assump-
tions that ignore or categorize many ecologically relevant factors such as dispersal ability and 
biotic interactions. Another potential source of model error is the assumption that species 
are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat 
a species as a single entity, although populations of many species differ due to local adapta-
tion or other genetic differentiation. Not taking local adaptation into account may lead to 
incorrect range prediction and therefore misplaced conservation efforts. A constraint is that 
we often do not know the degree to which populations are locally adapted. Lacking experi-
mental evidence, we still can evaluate niche differentiation within a species’ range to promote 
better conservation decisions. We explore possible conservation implications of making type 
I or type II errors in this context. For each of two species, we construct three separate Max-
Ent models, one considering the species as a single population and two of disjunct popula-
tions. Principal component analyses and response curves indicate different climate characteristics 
in the current environments of the populations. Model projections into future climates indicate 
minimal overlap between areas predicted to be climatically suitable by the whole species vs. 
population-based models. We present a workflow for addressing uncertainty surrounding local 
adaptation in SDM application and illustrate the value of conducting population-based models 
to compare with whole-species models. These comparisons might result in more cautious 
management actions when alternative range outcomes are considered.

Key words:   biodiversity management; conservation effectiveness; environmental niche models; intraspecific 
variation; Lycaeides melissa samuelis; model uncertainty; Primula nutans var. finmarchica; translocation.

Ecological Applications, 26(4), 2016, pp. 1154–1169 
© 2016 by the Ecological Society of America

Manuscript received 20 May 2015; revised 3 September 2015; 
accepted 8 September 2015; final version received 24 November 
2015. Corresponding Editor: J. Franklin.

6 E-mail: hellmann@umn.edu 
7 �http://www.gbif.org/occurrence

mailto:hellmann@umn.edu
http://www.gbif.org/occurrence


LOCAL ADAPTATION AND SDMSJune 2016 � 1155

One potential source of error in SDMs that has been 
largely overlooked is the effect of local adaptation and 
the consequences of functional differences among popu-
lations within a species’ ranges. A common approach in 
ecological analyses, including SDMs, is to assume that 
all populations of a species respond homogeneously to 
the range of environmental conditions experienced by 
the whole species (Davis and Shaw 2001, Bolnick et al. 
2003, Atkins and Travis 2010, Banta et  al. 2012, 
Fitzpatrick and Keller 2015). However, species vary 
genetically across their range and populations can be 
locally adapted with specialized climatic or other envi-
ronmental tolerances. If an SDM is constructed using 
distribution data for the whole species, it will also treat 
the species as an evolutionarily homogeneous entity over 
its entire range (Hampe 2004) and therefore not take 
into account possible population differences, including 
local adaptation.

Several studies indicate that populations of some spe-
cies are adapted to local conditions (Davis and Shaw 
2001, Bolnick et  al. 2003, Fournier-Level et  al. 2011, 
Banta et  al. 2012), including climate (Pelini et  al. 2009, 
O’Neil et al. 2014). Attempts have recently been made to 
incorporate local adaptation and phenotypic plasticity 
into SDMs when modeling suitable habitats under climate 
change (Pearman et al. 2010, Benito Garzón et al. 2011, 
Banta et  al. 2012, Bocedi et  al. 2013, Oney et  al. 2013, 
Romero et al. 2013, Homburg et al. 2014, Valladares et al. 
2014) and studies indicate that there can be an effect, 
although varying in magnitude and direction, of discrimi-
nating among populations in the modeling process.

This does not, however, mean that one should always 
assume local adaptation in SDMs if populations of spe-
cies occupy apparently different environments, since 
they may be phenotypically plastic. Nevertheless, with-
out extensive experiments, we cannot know whether 
observed environmental differences among populations 
have led to local adaptation (Kawecki and Ebert 2004, 
Pelini et  al. 2009, Vergeer and Kunin 2013, Kreyling 
et  al. 2014, O’Neil et  al. 2014). While mechanistic or 
individual-based process models can offer more detailed 
insight on environmental requirements of species (sensu 
Morin and Thuiller 2009), they also require species-
specific physiological parameters that are rarely avail-
able. Thus, we need additional cost- and time-effective 
methods for testing the potential importance of popula-
tion differences. Such first-order approximations based 
on simplified assumptions can serve as a basis for refined 
investigations requiring more time and resources. 
Previous studies have not compared the potential mag-
nitude of difference among populations that might lead 
us to model populations separately when using SDMs 
nor the conservation implications of incorporating or 
ignoring local adaptation in SDMs.

Here, we use two case species to address the following 
questions: (1) Does modeling geographically disjunt popu-
lations separately significantly alter SDM projections 
compared to projections based on whole species analyses? 

(2) Does considering population differences affect con-
servation recommendations and conservation strategies? 
and (3) Can climatic variables inform subsequent field 
experiments to detect and measure local adaptation?

Methods

Study species

The Karner blue butterfly (Lycaeides melissa samuelis; 
KBB) occurs in the Great Lakes and nearby regions of 
North America, historically ranging from Minnesota, 
USA, in the west to New Hampshire, USA, in the east 
(Grundel et al. 1998, Forister et al. 2010). It is a feder-
ally listed endangered species in the USA whose larvae 
feed on leaves of a single plant species, wild lupine 
(Lupinus perennis). The KBB has declined, in part, 
because its main habitats, savannas and barrens, have 
been anthropogenically altered since the 19th century 
(Forister et  al. 2010). Populations are currently found 
in Wisconsin, Michigan, and New York, have likely been 
recently extirpated in Minnesota, Illinois, Indiana, and 
Ontario, and have recently been reintroduced into Ohio 
and New Hampshire (Fig.  1a). KBB populations have 
been shown to be genetically different, at least in their 
mitochondrial haplotypes (Gompert et al. 2006).

The Siberian primrose (Primula nutans) is a circum-
polar, perennial plant that mainly grows in seashore and 
riverside meadows (Mäkinen and Mäkinen 1964, Kreivi 
et  al. 2011). The subspecies P.  nutans ssp. finmarchica 
occurs in northern Europe (Kreivi et al. 2006). Mäkinen 
and Mäkinen (1964) divided this subspecies into two 
varieties according to morphological and ecological 
characteristics: P. nutans var. finmarchica occurs at the 
shores of the Arctic Sea, while P.  nutans var. jokelae 
occurs by the Bothnian Bay in Finland and Sweden and 
by the shores of the White Sea in Russia. However, 
recent genetic studies have found the three main popula-
tions of the Siberian primrose (SP) to be similarly dis-
tinct from each other (Kreivi et al. 2011).

Both taxa are threatened and occur in geographically 
separated populations with little gene flow among popu-
lations (Gompert et  al. 2006, Kreivi et  al. 2006). The 
main populations of both species were possibly sepa-
rated into their geographically distinct populations dur-
ing the last glacial retreat (Mäkinen and Mäkinen 1964, 
Gompert et  al. 2008). Further, they have been suffi-
ciently studied (Grundel et al. 1998, Gompert et al. 2006, 
Rautiainen et  al. 2009, Kreivi et  al. 2011) to provide 
distributional data and biological information useful in 
niche model interpretation. However, we do not know 
if populations of these species are locally adapted.

Occurrence data

Occurrence data for the KBB (Fig. 1a) were combined 
from site survey records, museum records, individual col-
lector records, and GBIF data (see footnote 7), giving 
us 828 unique occurrence points. For SP distribution 
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data (Fig. 1b), we combined the occurrence data obtained 
from GBIF, Kastikka (Finnish plant distribution data-
base; Lampinen et  al. 2012), and Hertta (Finnish 
Environment Institute, unpublished data), as well as infor-
mation on occurrences in Russia based on herbarium 
specimens (from collections in Helsinki [H] and Turku 
[TUR]; acronyms after Thiers, available online).8 We also 
added some distribution points in Russia according to 
the distribution map by Hultén and Fries (1986), giving 
us 210 occupied cells. For both species, one grid cell 
(30  arcsec) was either occupied or not, irrespective of 
whether many occurrence points fell into a specific grid 
cell.

Study region

We created the study domain using a 1000-km buffer 
around the occurrence points for each species. This mask 
included all occurrences of the species yet lessened 
extrapolation, i.e., estimation outside observed condi-
tions, when projecting into other climate conditions and 

larger domains, and excluded bioclimatic regions that 
were spuriously similar to where the species occurred. 
A common recommendation for choosing the study area 
is to include areas to which the species could disperse 
(Merow et  al. 2013). In this study, we considered con-
servation under climate change, including possible use 
of assisted migration to move species to climatically suit-
able regions (McLachlan et al. 2007, Hällfors et al. 2014). 
As a consequence, we not only needed to consider areas 
where the species could disperse to on its own in the 
near future, but also areas where it might migrate under 
longer climate changes and sites that might be candidates 
for assisted migration (also called managed relocation).

Climatic data

Data on current climatic conditions (average climate 
for 1950–2000; Hijmans et al. 2005), represented by 19 
bioclimatic variables, were obtained from the WorldClim 
dataset (Hijmans et al. 2005). The spatial resolution of 
both the current and future climate data was 30 arcsec. 
Future climate data were obtained from CCAFS (Climate 
Change, Agriculture and Food Security; Ramirez and 
Jarvis 2008). This dataset has been statistically down-
scaled from climate models for the Fourth report of the 
International Panel for Climate Change (IPCC 2007). 
The Fifth IPCC report (IPCC 2014) contained updated 
climate projections; however, the climate projection data 
available at 30-arcsec spatial resolution were not available 
for multiple decades. We used seven time periods during 
the 21st century to generate future distribution projec-
tions. Each time frame or decade corresponded to a 30-yr 
average, e.g., 2040s is given by 2030–2059. We used 
predictions for future climate calculated according to the 
UKMO-HadGEM1 general circulation model and the 
A1B scenario, which were the most recent climate 
scenarios available at the time we conducted this present 
study (Nakicenovic and Swart 2000). This scenario 
describes a world with rapid economic growth using both 
fossil and non-fossil energy, and reflects current CO2 
growth rates (Le Quéré et al. 2009).

We performed a variance inflation factor analysis 
(VIF) to help eliminate highly correlated variables as 
SDM predictors (Merow et al. 2013) Although machine 
learning methods such as MaxEnt can cope with some 
degree of collinearity (Elith et  al. 2011), we elected to 
use variable importance and response curves to inform 
future experiments (see study question 3 in Introduction). 
If two environmental variables are highly correlated, the 
marginal response curves can be misleading. Therefore, 
we excluded correlated variables prior to calibrating 
models. For the analysis, we calculated Pearson’s correla-
tion values for all 19 bioclimatic variables from a sample 
of 100 000 locations within both study regions (see 
Appendix S1: Table S1 for correlation values). We then 
ran an ordinary least squares regression that held one 
variable as dependent and all the other variables as 
explanatory. We calculated variance inflation factors 
(VIF) for each variable and subsequently deleted the 

Fig. 1.  Occurrence points were broken up into populations 
as determined by PCA, see Methods: Grouping of populations and 
Results. (a) Symbols are x, KBB-East population; circle, KBB-
West population. (b) Symbols are x,  SP-North population; 
circle, SP-South population. The whole species models used all 
occurrence points of each species (KBB-Whole and SP-Whole).

8 �http://sweetgum.nybg.org/ih/

http://sweetgum.nybg.org/ih/
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variable with the highest VIF value if it was greater than 
10 and repeated the whole procedure until all VIF values 
were less than 10 (Craney and Surles 2002, O’Brien 2007). 
We retained eight variables for each species (Table 1).

Grouping of populations

We used principal components analysis (PCA; Abdi 
and Williams 2010) to explore whether occurrences of 
the species are segregated by climatic variables and to 
identify potential climatically distinct populations. We 
used the PCA function in the R package FactoMineR 
(Lê et al. 2008) to calculate principal components using 
the entire set of 19 variables. We used the first two prin-
cipal components and the 95% confidence interval of 
clustering, together with knowledge of the taxonomy 
and the spatial genetic structure of the species (Gompert 
et al. 2006, Kreivi et al. 2011), to define the populations 
for this study. KBB occurrence points were divided into 
western and eastern populations (KBB-West and KBB-
East; Results; Fig.  1) and the SP into southern and 
northern populations (SP-South and SP-North; Fig. 1). 
The whole species are referred to as KBB-Whole and 
SP-Whole. To inform our third research question, which 
aimed to identify key climatic variables that differed 
between populations and to inform experiments testing 
local adaptation, we also conducted PCA using uncor-
related climatic variables.

Constructing SDMs

We constructed separate SDMs for the two popula-
tions of each species (KBB-East, KBB-West, SP-South, 
and SP-North) in addition to an SDM for each species 
as a whole (KBB-Whole and SP-Whole). Models dif-
fered in number of distribution points (KBB-Whole, 
828; KBB-East, 355; KBB-West, 473; SP-Whole, 210; 
SP-South, 150; and SP-North, 60). Different sample 
sizes may affect the comparison of models. However, 
removing information through data point deletion is not 
necessarily a robust alternative and does not eliminate 
the need to model populations separately if  they are 
locally adapted.

We used MaxEnt (Phillips et al. 2006) to model species 
distributions, as it is a commonly used SDM algorithm 
for presence-only data (Franklin 2010, Merow et  al. 
2013), and it has also been shown to perform well in 
comparisons among different algorithms (Elith et  al. 
2006, Franklin 2010). Although ensemble approaches in 
SDM have recently been favored (Araújo and New 
2007), we used one algorithm, one set of climatic param-
eters, and one climatic projection based on one general 
circulation model and one carbon emissions scenario. 
This enabled us to concentrate on the differences that 
the species vs. population approaches produced.

We used 20% of the occurrence data for testing the 
models. We used ten-fold cross validation, thus 

Table  1.  Index for variable abbreviations and table of variable importance (permutation importance in MaxEnt model) of 
variables included in each model.

Variable KBB-Whole KBB-East KBB-West SP-Whole SP-North SP-South

AMT bio1 Annual mean temperature … … … 4.8 19 10.3
MDR bio2 Mean diurnal range 1.4 1.2 1.7 2.7 1.3 5.9
IT bio3 Isothermality … … … 0.9 0.5 0.6
TS bio4 Temperature seasonality 9.6 11.2 1.9 … … …
TWaM bio5 Max. temperature of warmest 

month
… … … … … …

TCM bio6 Min. temperature of coldest 
month

… … … … … …

TAR bio7 Temperature annual range … … … … … …
TWeQ bio8 Mean temperature of wettest 

quarter
4.5 16.9 1.8 1 6.3 2.5

TDQ bio9 Mean temperature of driest 
quarter

4 12 1.4 27.3 57.4 1.1

TWaQ bio10 Mean temperature of warmest 
quarter

70.5 27.9 47.9 … … …

TCQ bio11 Mean temperature of coldest 
quarter

… … … … … …

AP bio12 Annual precipitation … … … … … …
PWeM bio13 Precipitation of wettest month 2.2 7 2.4 … … …
PDM bio14 Precipitation of driest month … … … … … …
PS bio15 Precipitation seasonality 6.2 12.6 40.3 0.4 0.3 0.9
PWeQ bio16 Precipitation of wettest quarter … … … … … …
PDQ bio17 Precipitation of driest quarter … … … … … …
PWaQ bio18 Precipitation of warmest quarter 1.7 11.2 2.7 62.1 14.5 75.9
PCQ bio19 Precipitation of coldest quarter … … … 0.9 0.7 2.7

Note: Variable importance higher than 20 in bold.
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obtaining 10 models and 10 projections for each species. 
We  converted the probability of habitat suitability to 
binary outputs of suitable and unsuitable areas using 
the optimal threshold of maximum sensitivity plus speci-
ficity, striking a balance between sensitivity and specific-
ity (Liu et  al. 2005). For each species and population, 
this was conducted for all 10 models, giving us 10 pres-
ence–absence maps. We then used a majority vote 
approach to determine the final presence–absence map: 
the cell was considered suitable in the final map if more 
than five models predicted it to be suitable. The model 
performance was checked using the area under the 
receiver operating characteristics curve (AUC; Jiménez-
Valverde 2012) for the ten models used to obtain one 
consensus prediction. We report the mean and standard 
deviation of AUC for each suite of ten models (see 
Results). Since we were not comparing the performance 
of different models, this measure was suitable for our 
purpose, although concerns have been recognized for 
using AUC as the only measure of model performance 
(Lobo et al. 2008).

To understand which climatic variables may be 
important and differ by population (see study question 
three in Introduction), we used the permutation impor-
tance measure in MaxEnt to assess the relative contribu-
tion of  each environmental variable in determining the 
predicted distribution of  the modeled entity (Phillips 
2006). Response curves of  each variable indicate the 
response of  the species (or population) to different vari-
able values (Phillips 2006), i.e., the relative probability 
that a cell with a certain variable value is suitable for 
the modeled entity. We identified and examined response 
curves of  the most important variables in the models 
and PCA.

Niche similarity tests

To inform study question one (see Introduction) and 
evaluate the representativeness of the whole-species 
models for identifying suitable conditions for each 
population and whether this changed over time, we 
performed a niche similarity test. Using ENMTools 
(Warren et al. 2008, 2010), we measured niche similarity 
between the mean probabilities of occurrence from ten-
fold cross validation under all time periods of all three 
models for both species. We quantified niche similarity 
using two measures: Schoener’s D (Shoener 1968) and 
the I statistic (a derivative of Hellinger’s distance; see 
Warren et  al. 2008, 2010 for additional details). Both 
metrics range from 0 (species have completely discord-
ant niches) to 1 (species have identical niches). High 
values of these metrics between the predictions of the 
whole-species model and that of the two population 
models indicate that they are predicting different areas 
of future occupancy. Changes in the metrics over time 
illustrate the degree to which the whole species model 
can or cannot represent the climatic niches of the con-
stituent populations.

Evaluation of conservation implications

To evaluate the effects of the two approaches 
(modeling species as a whole or populations sepa-
rately) on conservation decisions (see study question 
two in Introduction), we used the binary suitability 
maps (suitable vs. unsuitable cells; Figs.  3a and 4a; 
Appendix S1: Fig. S2) to devise broad conservation 
plans. We compared the negative and positive effects 
of possible conservation decisions made under cli-
matic local adaptation of populations vs. the species 
not being differentiated into populations, assuming 
we knew which phenomenon was correct and which 
incorrect.

Results

Delineating populations

KBB showed distinct clustering in PCA (Fig. 2a; vari-
able contribution in Appendix S1: Table S2), and we 
divided the KBB occurrences into two populations 
according to this. Two distinct groups were identifiable: 
the eastern population (KBB-East) consisted of occur-
rences in Illinois, Indiana, Michigan, Ohio, New York, 
and New Hampshire in the USA and Ontario of Canada. 
The western population (KBB-West) consisted of occur-
rences in Minnesota and Wisconsin (Figs.  1a and 2a). 
No single variable dominated the PC1 axis (all contrib-
uted <10%; Appendix S1: Table S2) whereas the PC2 
axis was dominated by temperature of warmest month 
(TWaM), temperature of warmest quarter (TWaQ), and 
temperature of wettest quarter (TWeQ; together con-
tributing >50% of the PC axis; index of abbreviations 
in Table 1).

The SP occurrences did not form clusters that were 
as well separated (Fig.  2b; variable contribution in 
Appendix S1: Table S2). However, some clustering was 
apparent on the combination of PC1 (dominated by 
and contributing with >50%: precipitation seasonality 
[PS], precipitation of coldest quarter [PCQ], precipita-
tion of driest quarter [PDQ], precipitation of driest 
month [PDM], and annual mean temperature [AMT]) 
and PC2 (dominated by and contributing with >50%: 
temperature annual range [TAR], temperature season-
ality [TS], and mean diurnal range [MDR]). This clus-
tering loosely follows the taxonomic division of the 
varieties (Mäkinen and Mäkinen 1964). Additionally, 
there is probably minimal gene flow among the geo-
graphically distinct populations (by the Bothnian Bay, 
White Sea, and Arctic Sea; Kreivi et  al. 2011). 
Therefore, we chose not to assign occurrences from 
the same geographic area to separate populations for 
the study. We grouped them into the southern and 
northern populations, which corresponded to var. 
jokelae (occurrences by Bothnian Bay and White Sea) 
and var. finmarchica (occurrences by the Arctic Sea), 
respectively (Fig. 1b; SP-South and SP-North, respec-
tively). Although SP populations could have been 
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defined based on other PCA clustering patterns, delin-
eating them into the two populations described here 
respects taxonomy and reflects how their geographical 
locations result in probable reproductive barriers 
(Kreivi et al. 2011).

Species distribution models

All mean testing AUC values for the models were 
higher than 0.95, which suggests that the model was able 
to distinguish between presence and background points 

Fig. 2.  PCA of the (a) KBB and (b) SP, using 19 bioclim variables. Circles represent 95% confidence intervals of population 
groupings. Percentages by axes indicate how much variation is explained by the principal components.
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similar conditions relating to precipitation during the 
wettest time of the year.

In the PCA, precipitation of coldest quarter (PCQ), 
precipitation seasonality (PS), temperature of wettest 
quarter (TWeQ), mean diurnal range (MDR), and 
isothermality (IT) were important for distinguishing the 
SP populations. The modeled responses (Appendix S1: 
Fig. S4) of the populations differed for all of these vari-
ables, except for PS, for which responses between popula-
tions was similar. MDR, IT, TWeQ, and PS did not 
correlate strongly (>0.9) with any other variable. PCQ 
correlated strongly with several other variables that 
related to different aspects of precipitation (Appendix 
S1: Table S1). Therefore the populations might also expe-
rience different precipitation regimes in their current 
distribution.

Discussion

Population-specific models describing climatically suit-
able areas for the populations of KBB and SP differed 
significantly from each other within a species and from 
the whole species model, suggesting that population-
specific climatic conditions can be important in modeling 
species distributions. There was no overlap between the 
projected population models of the KBB and a slight 
overlap between the SP population projections. This may 
reflect the biology of the species, but it may also be an 
artifact of the modeling process caused by, for instance, 
different samples sizes and background points, compli-
cated interactions between variables, or overfitting of the 
model. Investigating this is beyond the scope of this paper, 
but it could be studied using, e.g., sensitivity analysis, 
virtual species (LeRoy et  al. 2015), or investigating the 
presence of non-analogue climates (Williams et al. 2007).

The PCA results indicated clearer environmental 
differences between the KBB populations than between 
the SP populations, which is reflected in the SDMs. 
Therefore, our population delineation may have affected 
the difference in overlap between the species. All SDMs 
predicted some degree of geographical shift in suitable 
sites as climate change proceeds; however, suitable area 
for KBB-East and SP-South would remain in close prox-
imity to the current distribution until the late 21st cen-
tury. The models for KBB-West and SP-South indicate 
loss of suitable conditions within their current distribu-
tion. However, if the study area covered a larger area 
further to the north, the SP-Whole model would likely 
identify more suitable locations. For the SP, expanding 
the study area northwards would probably have mar-
ginal effect because of the lack of terrestrial area to the 
north.

As would be expected from the PCA results, the niche 
similarity tests indicated that the populations of each 
species occupy different niches (Fig. 5). There are some 
changes in niche similarity over time, e.g., a substantial 
increase in all niche similarities of the SP by the 2040s. 
This may be caused by the suitable climatic conditions 

left in northernmost Europe to which both SP popula-
tions are suited. Why climate is expected to change in 
this way, however, is beyond the scope of this paper. 
Generally, the climatic similarity in the inter-population 
model comparisons are consistently lower than the simi-
larity indicated by any of the comparisons of population 
models to the whole species model. The main divergence 
can be seen for the comparison of the whole species 
model projection to that of the population model with 
fewer distribution points. The KBB-East and SP-North 
projections become less similar to the whole species pro-
jection with time, compared to the KBB-West and SP-
South respectively. This indicates that the whole species 
models fail to represent climatically suitable areas for 
the populations and thus may not properly describe the 
future suitable areas for them. This emphasizes the need 
to study the basis of niche differences among popula-
tions, including local adaptation. The potential impor-
tance of such local adaptation can be explored with 
SDMs.

An important benefit of whole-species vs. population 
modeling is its power to guide experiments to detect 
functional differentiation and local adaptation. 
Specifically, the variable importances indicated by 
MaxEnt give some directions for identifying experimen-
tal variables in possible experiments on local adaptation 
between the populations. PCA also can be helpful in this 
regard, as it indicates what variables drive the differences 
between populations. MaxEnt (or other SDMs), how-
ever, has the added value of measuring variable impor-
tance for each population. If  populations of KBB were 
functionally different in their two climatic niches, i.e., 
locally adapted, we predict that experiments manipulat-
ing seasonality, summer precipitation, and winter tem-
perature would have the highest probability of yielding 
differences between populations. Experiments on local 
adaptation for the SP should concentrate on manipula-
tion of conditions relating to temperature and changes 
in temperature during the day and year as well as condi-
tions relating to precipitation regime over the year. Other 
parameters not included in this study may, however, also 
be important.

Implications for conservation

Failing to take population-level differences into 
account could lead to erroneous management decisions 
if populations are locally adapted. The populations of 
both case study species occupy different climatic envi-
ronments according to the PCA, MaxEnt models, and 
niche similarity tests conducted in this study. If the 
populations have adapted to these differing conditions, 
intraspecific variation could be relevant when planning 
conservation of the species. Experimental studies are 
needed to disentangle this, but in lack of such informa-
tion, readily applicable SDMs may offer one of the best 
tools to gain insight into the potential importance of 
niche divergence under climate change.
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(KBB-Whole, 0.953 [SD  =  0.006]; KBB-East, 0.977 
[0.005]; KBB-West, 0.976 [0.002]; SP-Whole, 0.977 
[0.011]; SP-South, 0.983 [0.02]; SP-North, 0.998 [0.006]).

Until mid-century, the predicted suitable area of both 
whole species models generally overlapped with that of 
the population-differentiated models, and the popula-
tion projections coincided with different parts of the 
whole species prediction (projections for 2020s, 2050s, 
and 2080s in Figs.  3a and 4a; all time periods in 
Appendix S1: Fig. S2). After mid-century, this overlap 
continued to be prominent for the SP, while all KBB 
models predicted mostly different, i.e., non-overlapping, 
areas to be suitable (Figs.  3c and 4c). Across all time 
periods, KBB-West and KBB-East predictions never 
overlapped with each other (Fig.  3a), while SP-South 
and SP-North predictions overlapped minimally (Fig. 4a; 
5.3% overlap in current climate, 12.6% in 2020s, 17.3% 
in 2030s, 22.0% in 2040s, 26.1% in 2050s, 20.8% in 2060s, 
9.4% in 2070s, and 5.1% in 2080s). The number of pro-
jected suitable cells based on both SP population models 
were approximately equal to the predicted number of 
suitable cells of the SP-Whole (Fig.  4b), whereas the 
KBB population models together predicted fewer suit-
able cells than KBB-Whole (Fig. 3b). Towards the end 
of the century, the amount of suitable climatic area 
declined according to all models and disappeared from 
the study region altogether for KBB-West. The models 
also differed in their prediction of loss of current distri-
bution area. KBB-East retained some of its current area 
while KBB-Whole and KBB-West lost all of its current 
distribution (Fig.  3c). SP-North lost suitability in all 
current areas while for the SP-Whole and SP-South some 
were retained, although the number of cells decreased 
during the century (Fig. 4c).

Niche similarity test

By using niche similarity tests, we compare how well 
the suitable climates of the modeled taxonomic units 
(populations or species) are represented by that of the 
other taxonomic units. Although the niches of the mod-
eled units do not change, the degree to which they are 
represented in different time periods vary and this is 
captured by the test. Niche-similarity measures derived 
from the comparison of the modeled suitable area under 
current climate for the KBB and SP populations were 
low (KBB-West and KBB-East, I = 0.1; Fig. 5a; plot of 
D values in Appendix S1: Fig. S3b; SP-South and SP-
North, I  =  0.09; Fig.  5b). The similarity measurement 
of each of the two populations compared to the whole 
species was high, however (KBB-West vs. KBB-Whole, 
I = 0.70; KBB-East vs. KBB-Whole, I = 0.68; SP-North 
vs. SP-Whole, I = 0.68; SP-South vs. SP-Whole, I = 0.71).

We also measured similarity of projected suitability 
probabilities over time (Fig.  5; plot of D values in 
Appendix S1: Fig. S3). For the KBB, the values for the 
population vs. whole species comparison fluctuated over 
the century and by the 2080s, KBB-West was roughly as 

similar to KBB-Whole (I = 0.66 in 2080s), as it was in 
the current projection (I = 0.70 in current). In contrast, 
KBB-East differentiated itself  from KBB-Whole 
(I = 0.56 in 2080s). The two KBB populations’ projected 
areas became more similar starting from mid-century 
(KBB-West vs. KBB-East in 2080s, I  =  0.19). For the 
SP, all comparisons showed higher similarity by the 2040s 
(Fig.  5b). However, niche similarity, i.e., similarity in 
projected areas, for SP-Whole and SP-North decreased 
in the beginning of the century, increased during the 
2040s, and ended up at the same level as in current cli-
mate in the 2080s (SP-North vs. SP-Whole in 2080s, 
I = 0.65; SP-South vs. SP-Whole, I = 0.88). In contrast, 
the SP-Whole vs. the SP-South comparison rose. The 
population comparison values stayed within the medium 
range; however, they obtained higher values at the end 
of the century than that they had in the beginning of 
the century (Fig.  5b; SP-South vs. SP-North in 2080s, 
I = 0.38).

Important variables

To understand what climatic conditions may be driv-
ing potential local adaptation and to inform possible 
future experiments of local adaptation, we identified the 
most important variables according to the models’ per-
mutation importance (Table 1) and PCA on VIF vari-
ables (Appendix S1: Table S2, Fig. S1). Response curves 
produced in the MaxEnt modeling process are in 
Appendix S1: Fig. S4. As the response curves represent 
how the predicted response changes for different values 
of the variable, while keeping all other climatic variables 
in the model at their average sample value, the response 
is context-specific and would change based on the set of 
covariates used in the same model. Also, as we did not 
include correlated variables, we cannot be sure that the 
omitted variables are not actually the ones governing 
the distribution of the species (Braunisch et  al. 2013, 
Dormann et  al. 2013). Therefore, we also discuss 
strongly correlated variables (>0.9; Appendix S1: Table 
S1) because they may differ between the populations in 
a similar way to the main variable.

Karner blue butterfly.—The most important variable 
(explaining > 20% of the model; Table 1) in the KBB-
Whole model was temperature of the warmest quarter 
(TWaQ). All models of the KBB show a similar response 
curve for TWaQ (Appendix S1: Fig. S4), with a peak at 
around 20°C. TWaQ correlated strongly with annual 
mean temperature (AMT) and temperature of the 
warmest month (TWaM), of which the latter was 
removed prior to the modeling process. For KBB-West, 
precipitation seasonality (PS) was also important. The 
two population models showed the highest suitability 
within different ranges of PS, which suggested that the 
populations occupy separate climatic conditions 
regarding PS, with the KBB-West experiencing more 
seasonality in precipitation compared to KBB-East 
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(Appendix S1: Fig. S4). However, strong negative 
correlations with precipitation of driest month (PDM), 
precipitation of driest quarter (PDQ), and precipitation 
of coldest quarter (PCQ) were noted. Precipitation 
during winter could therefore also differ for the 
populations.

In the PC analysis, temperature seasonality (TS), 
mean temperature of driest quarter (TDQ), and pre-
cipitation of warmest quarter (PWaQ) were important 
for distinguishing the populations of the KBB, and 
the modeled responses of the populations differed for 
these three variables (Appendix S1: Fig. S4). The 
populations experience different TS, with KBB-West 
experiencing more seasonality in temperature than 
KBB-East. TS correlated strongly with temperature 
of coldest month (TCM) and temperature annual 
range (TAR). Both relate to seasonality. TDQ and 

PWaQ did not correlate strongly (>0.9) with other 
variables.

Siberian primrose.—The two most important vari-
ables in the SP models were mean temperature of driest 
quarter (TDQ; for SP-Whole and SP-North) and pre-
cipitation of warmest quarter (PWaQ; for SP-Whole 
and SP-South). The response of TDQ was similar for 
all the models (Appendix S1: Fig. S4). SP-South had 
a slightly broader positive response ranging from 
about −10°C to 10°C, however, while the response of 
the SP-North was high at values between approxi-
mately −8°C and 8°C. TDQ did not correlate strongly 
(>0.9) with any other variable, while PWaQ, the 
response of which is similar for all models, correlated 
strongly with precipitation of wettest month (PWeM). 
This can indicate that the populations experience 

Fig. 3.  KBB predictions. (a) Map shows predicted suitable distribution in 2020s, 2050s, and 2080s according to KBB-Whole 
(left column, projection in green) and KBB-West and KBB-East (right column, projections in orange and blue, respectively). (b) 
Change in predicted suitable grid cells for the KBB species and the two populations across time; populations combined is predicted 
suitable grid cells for KBB-West and KBB-East. (c) Spatial overlap with current distribution points (number of cells that overlap).

a
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To explore the conservation implications of either 
taking the possibility of local adaptation into account 
or ignoring it, we compare the risks of making a type I 
or type II error in this context (Fig.  6). When taking 
local adaptation into account in formulating SDMs with 
lack of experimental evidence, there are two opposing 

assumptions that can be made: (1) the populations are 
locally adapted, or (2) there is no relevant local adapta-
tion. Assumption (1) implies using population-based 
models and drawing up a corresponding conservation 
strategy A (Fig. 6), while assumption (2) leads the con-
servationist to use a whole species model and 

b

c

Fig. 3.  (Continued)
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conservation strategy B. Either assumption may be 
wrong, which would lead to us making a type I error 
(assuming local adaptation where there is none) or type 
II error (assuming no intraspecific differences when 
populations actually are locally adapted; Fig.  6). 
However, the two conservation strategies (A and B) can 
be more or less detrimental if they were the wrong choice.

For the KBB, implementation of a conservation strat-
egy based on population models (assuming local adapta-
tion; strategy A) could proceed by ex situ conservation 
(off-site, e.g., in a zoo) of KBB-West, as suitable climatic 
conditions for it disappear altogether, and assisted 
migration of KBB-East to new climatically suitable 
areas. If our assumption is wrong, and there is no sub-
stantial difference between the populations, we would 

have made a type I error. In this case, we would have 
protected part of the species ex situ and assisted another 
part in its migration, however, not necessarily to the 
most favorable areas. The ex situ conserved individuals 
may still be used for reintroductions or assisted migra-
tions. A conservation strategy based on the whole-
species model (assuming no local adaptation; strategy B) 
could involve assisted migration to the new suitable 
areas in Canada. If this underlying assumption later 
turns out to be wrong, i.e., the populations turn out 
to  be locally adapted, we have made a type II error. 
We  would have assisted the species in its migration 
northward, but the locally adapted populations would 
have preferred conditions elsewhere, e.g., southwards in 
the case of KBB-East.

Fig. 4.  SP predictions. (a) Map shows predicted suitable distribution in 2020s, 2050s, and 2080s according to SP-Whole (left 
column, projection in green) and SP-South and SP-North (right column, projections in orange and blue, respectively). (b) Change 
in predicted suitable grid cells for the SP species and the two populations across time; populations combined is predicted suitable 
grid cells for SP-North and SP-South. (c) Spatial overlap with current distribution points (number of cells that overlap).

a
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For the SP, a population-based strategy could entail 
protecting SP-South in situ (on site; in its current loca-
tion) for as long as possible and using assisted migration 
to move SP-South individuals to where SP-North cur-
rently occurs, as well as to other areas becoming climati-
cally suitable in the northeastern part of the study 

region. We could assist SP-North in its migration by 
moving representatives further north. If research later 
indicates that the populations are not locally adapted, 
this conservation strategy may still be beneficial since 
the whole-species model also indicates that the new 
receiving areas are suitable. We may, however, regret 

b

C

Fig. 4.  (Continued)
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having assisted SP-South in its migration into the range 
of SP-North, since the northern population could have 
remained in the area, and we may have introduced 
pathogens or caused interbreeding of the populations, 
leading to loss of genetic diversity in other aspects than 
climatic adaptation. A whole species-based conserva-
tion strategy could consist of in situ conservation in all 
current areas and assisted migration of various repre-
sentatives of the species to new suitable areas further 
north and towards the east. If we later discover 
that the populations are locally adapted, this conserva-
tion strategy may prove disadvantageous. Protecting 

SP-South in situ would also have served the purpose in 
this case, but the current areas of the SP-North would 
not have remained suitable. Instead, it would have 
suited SP-South better. Depending on what source of 
individuals was used in the assisted migration project, 
the populations may have been introduced to incorrect 
areas.

One could argue that the local adaptation assump-
tion and resultant conservation strategies are more 
cautious and the type I error (assuming local adapta-
tion where there is none) therefore is less detrimental. 
This could be especially relevant for the SP, since the 

Fig. 6.  Assumption vs. reality of local adaptation or undifferentiated populations. In cases where we do not know the degree of 
local adaptation, the effect on conservation of making a type I or type II error needs to be compared.
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population models distinguish different areas of the 
whole species model as suitable for the specific popula-
tion, instead of pointing to additional ones. Nevertheless, 
if the risks involved with both errors are high and 
knowledge on local adaptation is lacking, combining 
aspects of both conservation strategies may be the best 
way forward until we have gained further information 
through experiments that can give a more mechanistic 
understanding of species responses to different envi-
ronmental conditions (Morin and Thuiller 2009). For 
example, in the case of SP, such combined conservation 
efforts might include in situ conservation combined 
with assisted migration based on the whole-species 
model, through sourcing and distributing seed from SP 
locations that, based on the population models, most 
likely will be suitable for a specific receiving area. 
Opting for one main conservation strategy can be risky, 
and there may be more uncertainty involved in extinc-
tion predictions of SDMs than predictions of new suit-
able area (Schwartz 2012). Therefore, there is reason 
to be cautious with decisions involving discontinuing 
in situ conservation.

Workflow for considering local adaptation

To allow effective use of available SDM tools in con-
servation of species, managers could benefit from first-
order approaches that can identify cases where the 
populations of a species may differ from each other 
and  thus may need individual conservation attention, 
separate modeling, or diverse conservation strategies. We 
have identified important climatic parameters for design-
ing experiments on local adaptation in two species and 

illustrated how PCA and SDMs can be used to help 
guide experimental design for mechanistic experimenta-
tion that can aid in confirming the presence of local 
adaptation. Until such knowledge is obtained, however, 
SDMs continue to be useful tools for informing conser-
vation. Nevertheless, SDMs should be used mainly as a 
first-order approximation and not as a direct and sole 
guide for decisions.

We suggest a workflow for situations where local adap-
tation between populations is likely but unknown 
(Fig.  7). The first step involves recognizing cases when 
local adaptation may require conservation attention. It 
is reasonable to assume that many species of conserva-
tion concern would possess varying degrees of adapta-
tion to their local environments. Such cases include 
species with spatially distinct populations, reproductive 
isolation (Frankham et  al. 2012), steep environmental 
gradients, species with taxonomic confusion (Kawecki 
and Ebert 2004), subspecies (Oney et al. 2013), or endan-
gered species that are discontinuous across their range. 
If  these species seem to inhabit separate climatic environ-
ments across their range, this may be an indication that 
they could be locally adapted. Until experiments, such 
as translocation trials, elucidate existence of local 
adaptation, we suggest modeling uncertain populations 
separately in addition to whole-species modeling. By 
comparing the effects of making a type I or type II error, 
risks can be taken into account and minimized. In many 
cases, incorporating aspects of both scenarios may be 
beneficial, especially when the risks are high. By applying 
cautious conservation and acknowledging the possibility 
of local adaptation, we can avoid losing biodiversity due 
to ill-advised decisions.

Fig. 7.  Workflow for local adaptation consideration in conservation planning using SDMs.
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