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1  | INTRODUC TION

Predicting range shifts and population persistence in the face of 
climate change is a major ecological challenge, one that is further 
complicated by the potential for local adaptation (LA) to historical 
climate. Many species show strong reductions in performance when 
individuals are moved beyond range boundaries, suggesting that 
many distributional limits are driven by species’ climate tolerances 
(Hargreaves, Samis, & Eckert, 2014; Lee‐Yaw et al., 2016; Sexton & 
Dickman, 2016). But broad climate tolerances at the species level 
are generally comprised of narrower, locally adapted tolerances at 

the scale of populations (e.g., Angert, Sheth, & Paul, 2011; Hoffman, 
Anderson, & Hallas, 2002; Kelly, Sanford, & Grosberg, 2012; Sheth 
& Angert, 2014). Furthermore, such LA is common across both 
latitudinal and elevational ranges (e.g., Ågren & Schemske, 2012; 
Anderson, Perera, Chowdhury, & Mitchell‐Olds, 2015; Angert & 
Schemske, 2005; Clausen, Keck, & Hiesey, 1940; Joshi et al., 2001). 
Taken together, these patterns provide strong evidence that climate 
tolerances vary throughout species’ ranges (Bocedi et al., 2013; 
Fournier‐Level et al., 2011; Jump & Peñuelas, 2005; King, McKeown, 
Smale, & Moore, 2017; Savolainen, Pyhäjärvi, & Knürr, 2007) and will 
influence responses to ongoing climate change, with local responses 
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to climate change differing throughout a species’ range (Gilman, 
Wethey, & Helmuth, 2006; Herrando‐Pérez et al., 2018; Kelly et al., 
2012; Pelini et al., 2009; Peterson, Doak, & Morris, 2018).

Unfortunately, most models that have been used to forecast 
species distributions under climate change assume that climate tol‐
erances do not differ among populations (Bellard, Bertelsmeier, 
Leadley, Thuiller, & Courchamp 2012). Failure to account for intraspe‐
cific variation in climate tolerances can introduce errors into forecasts 
about geographic distributions and the future viability of a species as 
a whole (Pearman, D'Amen, Graham, Thuiller, & Zimmermann, 2010), 
and precludes analysis of the fates of particular intraspecific lineages 
or the maintenance of genetic variation in ecologically important 
traits (D’Amen, Zimmermann, & Pearman, 2013; Marcer, Mendez‐
Vigo, Alonso‐Blanco, & Pico, 2016). For example, if LA is strong, such 
that the breadth of environmental tolerances in local populations (in‐
cluding those at range edges) is much narrower than for a species as a 
whole (Holt, 2009), then locally adapted populations could be highly 
susceptible to climate change regardless of their position within the 
range, especially where the velocity of climate change (sensu Loarie 
et al., 2009) surpasses the species’ dispersal ability and gene flow is 
limited by habitat fragmentation (Figure 1). Further, in the Northern 
hemisphere, warming has been and is predicted to be greatest at 
high latitudes (IPCC, 2014), raising the possibility that populations 
may be most vulnerable not at the southern range limit, where tem‐
perature is already warmer, but at the polar limit, where change will 
be faster (Figure 1). However, further complicating the picture is the 
possibility that, even with strong LA, polar‐edge populations may, 
due to gene flow, perform better under conditions that are more be‐
nign than those they have historically experienced (Reich & Oleksyn, 
2008; Yang, Pedlar, McKenney, & Weersink, 2015) and may also have 
broader climate tolerances due to historically greater climate variabil‐
ity (Deutsch et al., 2008; Janzen, 1967; Molina‐Montenegro & Naya, 
2012; Sunday, Bates, & Dulvy, 2011).

A particularly important consequence of including LA in range‐
shift forecasts is that it may overturn the commonly assumed “trail‐
ing‐edge, leading‐edge” range‐shift pattern. Under this paradigm, 
species’ distributions are expected to change primarily by expanding 
at the polar or cooler range edge, while contracting at the equato‐
rial or warmer range edge where climate change will probably first 
exceed the species‐wide upper thermal limit (Figure 1b, Maggini et 
al., 2011). Although this pattern has already been observed in many 
taxa, for many others it has not been seen, either in response to con‐
temporary climate change (Chan, Hill, Ohlemüller, Roy, & Thomas, 
2011; Groom, 2013; Moritz et al., 2008; Parmesan et al., 1999; 
Poloczanska et al., 2013) or during climate shifts in the past (Davis & 
Shaw, 2001; Hampe & Petit, 2005). In particular, the “trailing‐edge, 
leading‐edge” pattern of range shifts has occurred less consistently 
in terrestrial species than marine species (Sunday, Bates, & Dulvy, 
2012). Although many mechanisms may interact with climate change 
to limit or alter range shifts (Anderson, Inouye, McKinney, Colautti, & 
Mitchell‐Olds, 2012; Louthan, Doak, & Angert, 2015; Pinsky, Worm, 
Fogarty, Sarmiento, & Levin, 2013; Suttle, Thomsen, & Power, 2007), 
several theoretical studies have highlighted the potential for LA to 

historical climate to drive nonintuitive patterns of range shifts. LA 
can result in range fragmentation, greater extinction risk, and loss of 
evolutionary diversity, including predominant losses of warm, cool, 
or even centrally adapted genotypes (Atkins & Travis, 2010; Bocedi 
et al., 2013; Valladares et al., 2014). The misperception that climate 
change effects will only manifest strongly at leading and trailing 
edges is also likely to curtail study of central populations, thus limit‐
ing our knowledge of range‐wide climate change impacts.

While most recently published range‐shift predictions have 
continued to ignore LA, an increasing number of studies are at‐
tempting to incorporate some form of intraspecific variation in 
climate responses. We note that genetically based variation in cli‐
mate tolerances within species (hereafter “G × E,” or gene by en‐
vironment interactions) will influence responses to climate change 
whether or not it is consistent with a pattern of LA to historical 
climate and that few forecast studies distinguish between G x E in 

F I G U R E  1   Changes in species distributions and abundances 
will depend on the magnitude of climate change, strength of local 
adaptation, and potential for dispersal. Shifts in both climate 
and species’ performance from the present (solid lines) into the 
future (dashed lines) may differ across species’ latitudinal ranges 
(or, equivalently, elevational ranges) in a variety of ways. (a) 
Climate is predicted to change throughout species’ ranges but 
the magnitude of change may be greatest at high latitudes. (b) 
Without local adaptation, climate change is predicted to cause 
range contraction at the warm edge through declining performance 
(population growth or probability of occurrence) and expansion 
beyond the cold edge as species track their climate envelope. (c) 
Local adaptation to historical climate conditions will drive the re‐
distribution of intraspecific lineages, with cold‐edge populations 
moving beyond the historical range boundary and greater 
movement required where the velocity of climate change is faster 
(arrows). (Inset) The climate envelope of a particular population will 
depend on the responses of multiple vital rates, some of which may 
show opposing climate responses (“demographic compensation”). 
(d) Populations throughout the species’ range may be at risk if there 
are barriers to dispersal, so that locally adapted lineages are unable 
to move to new areas with appropriate climate conditions
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general vs. LA in particular (see Results). Indeed, although climate 
tolerances may often be correlated with historical climate condi‐
tions throughout a species’ range, the correlation is unlikely to be 
perfect due to gene flow, especially at range edges (Kirkpatrick & 
Barton, 1997; Paul, Sheth, & Angert, 2011). Given the growing rec‐
ognition of the role that LA may play in shaping range shifts, more 
forecasts incorporating G × E are likely to soon appear, so now is a 
timely moment to assess the strengths and weaknesses of the ap‐
proaches that have been adopted to date, to ask whether we can 
discern any generalities from these studies, and to identify best 
practices for including LA in future forecasts of climate responses.

In this review, we focus on approaches to incorporate existing 
G x E into forecasts of future climate responses. While the long‐term 
biological impact of climate change will depend on future evolution‐
ary processes, species’ immediate responses to climate change will 
be shaped by current patterns of local adaptation to climate. This 
is particularly true for species with long generation times that may 
lack the capacity for rapid adaptation. Further, given the challenge of 
forecasting evolutionary dynamics (see Discussion), understanding 
the traits and environmental variables that have driven evolutionary 
adaptation in the past is a necessary first step to more speculative 
predictions of future evolutionary responses.

2  | RE VIE W OF RECENT LITER ATURE 
INCORPOR ATING INTR A SPECIFIC 
VARIATION INTO R ANGE FOREC A STS

We searched ISI Web of Science on February 9, 2018, for studies that 
incorporated intraspecific variation into spatially explicit forecasts 
of species’ distributions under projected climate (see Supporting 
Information Appendix S1). This yielded a total of 28 studies includ‐
ing 53 distribution models of 91 species (one model predicted 48 
species simultaneously, Hamann & Aitken, 2013; and several studies 
made predictions for the same tree species). These included models 
for 32 plants (including 23 trees), 9 mammals, 4 birds, 2 reptiles, 1 
amphibian, 4 insects, and 1 coral.

2.1 | Overview of differences among 
forecasting approaches

All of the studies included in our review (Table 1, Appendix S2) 
adopted one of three general methods to incorporate intraspecific 
variation into range predictions (see examples in Box 1). We now 
review the characteristics of the three methods and summarize the 
general strengths and limitations of each approach.

2.1.1 | Species distribution models

The most common approach, and also the simplest in terms of its 
data requirements, is to use a species distribution model (SDM, 
Franklin, 2009). SDMs represented 18 of 28 studies (64%) and 

37 of 53 models in our review (Figure 2, Supporting Information 
Appendix S2). SDMs that incorporate intraspecific variation use 
known occurrences for each of two or more intraspecific groups, 
based on taxonomic, genetic, or biogeographic information, and 
the historical climate (and sometimes other abiotic and biotic vari‐
ables) at those sites, and then project the distribution of all groups 
in the future climate. Modifications of the basic SDM approach 
use occurrences of community types that include a species to 
predict the frequency of that species across the future landscape 
(e.g., Gray, Gylander, Mbogga, Chen, & Hamann, 2011; Hamann 
& Aitken, 2013), or use data on survival of a species in multiple 
transplant gardens to fit a model that predicts probability of oc‐
currence as a function of climate (Benito Garzón, Alía, Robson, & 
Zavala, 2011).

The prevalence of SDMs in general, and in analysis of intraspecific 
variation in species forecasts in particular, is directly related to the read‐
ily available data sources they employ and the ease of using well‐de‐
veloped software (e.g., MaxEnt; Phillips, Anderson, & Schapire, 2006). 
Other advantages of SDMs are that they commonly consider an exten‐
sive set of potential climate variables (Supporting Information Appendix 
S2), increasingly incorporate model uncertainty by using several algo‐
rithms, and build uncertainty in future climate into ensemble‐based dis‐
tribution forecasts (Table 1; Araújo & New, 2007; Thuiller, 2004).

Species distribution models, however, are agnostic about the un‐
derlying mechanisms shaping distribution and thus rely on the assump‐
tion that distributional patterns reflect differing climate tolerances of 
the intraspecific lineages. But intraspecific groups may occupy differ‐
ing climate ranges by chance. Dividing a species’ range into several 
groups is likely to yield different climate–occupancy relationships for 
each group even in the absence of LA. Conversely, many SDMs we 
reviewed rely on relatively coarse intraspecific groupings, such as sub‐
species or varieties (Figure 2a), which likely underestimate the true 
magnitude of LA to climate. Indeed, we could find no examples or ar‐
guments that show how SDMs by themselves can establish whether 
a species shows LA to climate. This makes it impossible to determine 
whether forecasts of whole‐species SDMs or intraspecific SDMs are 
more likely to be correct without gathering additional information, 
thus weakening the advantage of their simple data requirements.

Very few of the SDM studies we reviewed looked for evi‐
dence of adaptation to local climate in the different intraspecific 
groups. However, a recent trend in SDM papers is to also use 
occurrence and climate data to test for similarity in the climatic 
niches of the groups (e.g., Hu et al., 2017; Ikeda et al., 2017, 
Meynard et al., 2017). An important caveat is that patterns of 
occurrence by themselves do not provide very strong tests of the 
hypothesis that intraspecific groups differ in their environmen‐
tal tolerances. Tests for niche similarity (cf. Broennimann et al., 
2012; Warren, Glor, & Turelli, 2008) typically compare the ob‐
served niche overlap between two groups (measured by statistics 
such as Schoener's D) to the distribution obtained by comparing 
occurrences of one group to randomized sets of pseudo‐occur‐
rences chosen repeatedly from within the range of the second 
group, thus accounting for differences in available environments 
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between the two groups (followed by a parallel test in the other 
direction). While such tests can show whether intraspecific 
groups occupy more different environmental conditions than 
can be explained by background environmental differences be‐
tween their two ranges, they do not unambiguously show that 
individuals of two groups would perform differently in the same 

environment. Many abiotic and biotic factors typically not exam‐
ined in these tests could shape the environmental tolerances of 
a species. For example, geographic differences in the capacity of 
the substrate to hold moisture could mean that a plant species 
would only be able to persist at sites experiencing greater than 
average rainfall in one region, but could tolerate lower levels of 

Box 1 Methods to forecast responses to climate change given intraspecific variation

Species distribution models
This approach infers the climate sensitivity of each intraspecific lineage based on the statistical relationship between its pattern of occurrence 
and one or more climate variables. For example, D'Amen et al. (2013) modeled the distributions of previously identified phylogeographic lineages 
within each of nine large mammal species in Africa. They used IUCN distribution maps to identify occurrences and absences for each phylogeo‐
graphic lineage (between two and seven per species) and excluded lineages with very narrow distributions. They fit separate generalized boosted 
models (GBMs) to the presence/absence data for each lineage as well as species‐wide models fit to all lineages and composite models represent‐
ing the mean probability of occurrence of at least one lineage. Models were fit using six WorldClim bioclimate variables (Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005) and cross‐validated using 10% of the data in 10 random samples. The distribution of each lineage and species was 
forecasted for two future time periods and compared to the distribution of existing protected areas. They found that lineage‐specific models 
predicted disparate climate responses within species and greater declines in suitable habitat relative to species‐wide models.

Box Figure 1  Projected future distribution for warthog (Phacochoerus africanus) subspecies, modified from D'Amen et al. (2013).

Mechanistic models
These approaches model the climate sensitivity of each intraspecific group by describing the mechanistic biological processes (e.g. phe‐
nology, physiology, or development) that link data on fitness or trait variation to climate responses in distribution or abundance. For 
example, Angert et al. (2011) quantified thermal performance curves (TPCs) for growth rate in 12 populations of the plant Mimulus 
cardinalis by experimentally manipulating growing temperatures. To relate TPCs to patterns of distribution, they used EcoCrop, a pro‐
cess‐based model which estimates habitat suitability based on temperature and precipitation conditions relative to those needed for 
optimal growth. Separate temperature thresholds were inferred for each population from fitted TPCs while other parameters were as‐
sumed to be constant. They validated model predictions by comparison to independent occurrence data. The distribution under climate 
change was forecasted for each population separately, as well as species‐wide models based on the average or range of fitted TPC pa‐
rameters. How climate responses differed throughout the species range was then tested by relating the TPC parameters of each popula‐
tion to its local climate and range position. Angert et al. (2011) predicted that populations from higher latitudes and colder environments, 
which had lower thermal optima, and those with lower thermal breadth were at greater risk from climate change.

P. a. africanus
P. a. sundevallii
P. a. massaicus
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precipitation in another. That is, the climatic niche of a uniform 
species could be influenced nonadditively by other factors that 
vary geographically, and this explanation for differences in the 

climatic conditions experienced by different groups in different 
areas would be difficult to distinguish from LA without data from 
reciprocal transplant or controlled climate experiments.

Box Figure 2  Populations’ thermal optima affect predicted range shifts, modified from Angert et al. (2011).

Climate response functions
These approaches empirically measure the climate sensitivity of each intraspecific group using extensive transplant data to model per‐
formance as an interaction between source and site environmental conditions. For example, Wang, O'Neill, and Aitken (2010) used data 
on the 20‐yr height of the tree Pinus contorta from 140 populations transplanted into 60 sites throughout British Columbia. They fit a 
multiple regression for height using population and test site temperature and heat: moisture variables and their interactions, as well as 
the geographic position of each site, as explanatory variables. The standard error of model predictions was computed by bootstrapping 
the dataset. Forecasts were generated for 1.6‐km2 grid cells in British Columbia by using the historical climate as population values and 
predicted climate as site values (i.e., assuming no dispersal) and also by using the population values that produced the highest forecasted 
growth (i.e., assuming optimal dispersal). Wang et al. (2010) predicted that climate change would have the most negative impacts in 
populations from historically warmer environments and in the warmest sites.

Box Figure 3  Performance as an interaction between source (provenance) and site mean annual temperature, modified from Wang  
et al. (2010). [Colour figure can be viewed at wileyonlinelibrary.com]

Provenance temperature (C)

Test site temperature (C)

)
m(thgiehry-02

www.wileyonlinelibrary.com
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However, none of the SDM studies we reviewed used indepen‐
dent data to validate fitted models (Figure 2d). Further, we found 
only one SDM study that compared multiple approaches to delineat‐
ing intraspecific groups (Marcer et al., 2016), even though different 
ways of grouping occurrences could lead to dramatically different 
forecasts.

2.1.2 | Mechanistic models

The second approach, which we are calling mechanistic models, uses 
information about the mechanism linking individual performance to 
climate, such as phenology, physiology, or climate‐dependent devel‐
opment, to predict performance across space under future climate 
regimes. Mechanistic models require more knowledge about the 
biology of each species, tend to be more idiosyncratic between spe‐
cies relative to SDMs, and account for only four of the studies we 
reviewed (Appendix S2). Models used data ranging from variation in 
body size and prey availability in natural populations (Buckley, 2008) 
to flowering or leaf‐out phenology in common gardens (Chapman, 
Scalone, Stefanic, & Bullock, 2017; Morin, Viner, & Chuine, 2008) 
to laboratory‐estimated temperature‐dependent growth curves 
(Angert et al., 2011). What unites these disparate approaches is that 
they combined data on intraspecific trait variation with mechanistic 
physiological, phenological, or developmental models to predict cli‐
mate effects on distribution. The main advantage of this approach is 
that these models are developed from first principles and generally 
represent specific hypotheses about the mechanism linking climate 
to distribution. However, this strategy nearly always also requires 
strong assumptions for which little direct data are available. Perhaps 

for this reason, every study included an independent model valida‐
tion step, by testing the ability of models to predict current distribu‐
tions (Figure 2d). However, few evaluated the potential for different 
model structures or parameter values to substantively alter fore‐
casts (Table 1).

2.1.3 | Climate response functions

These models use regressions of individual performance measures, 
such as growth or survival, from transplant gardens against climate 
variables at the site of the garden and also at the source location for 
each intraspecific group (i.e., “provenance”). The fitted regression 
(“response function” or “transfer function”) is then used to predict 
future performance of all provenances across the landscape (Aitken, 
Yeaman, Holliday, Wang, & Curtis‐McLane, 2008). This approach re‐
quires extensive data and accounted for only 7 of the reviewed stud‐
ies, all focused on commercially important tree species (Appendix S2).

The principal advantage of response function models is their abil‐
ity to capture how the historical climate of a provenance shapes its 
responses to forecasted climate, which allows the response function 
to be applied broadly across the species’ range (not only at trans‐
plant sites). Where data on multiple vital rates are available, this ap‐
proach also allows forecasts for individual vital rates (e.g., separate 
forecasts for growth rate and survival, as in Valladares et al., 2014) 
as well as composite fitness metrics or occurrence. However, this is 
rarely done in practice as the goal of most provenance experiments 
and response function models has been to inform future planting 
recommendations for commercially valuable trees, and most fore‐
casts have predicted tree productivity (measured in biomass per 

F I G U R E  2   Summary of main 
approaches to incorporate intraspecific 
variation into published distribution 
forecasts. Barplots show the number 
of models of each method that used a 
particular approach. (a) Individuals within 
species were divided into groups with 
differing climate responses on the basis 
of populations, taxonomic units (e.g., 
subspecies, cultivars), biogeographic 
regions, genetic groups (e.g., haplotypes), 
or phenotypes. (b) Climate responses 
for each intraspecific lineage were 
estimated using observational data, field 
transplant experiments, or controlled 
climate manipulations. (c) The number 
of intraspecific lineages used in a given 
forecast model. (d) Forecast models were 
not validated, cross‐validated using a 
portion of the dataset, or validated using 
an independent dataset
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hectare, or basal area) or height (Supporting Information Appendix 
S2). Moreover, none of the transplant studies has been carried out 
long enough to assess climate effects on recruitment, fecundity, or 
adult survival, even though the latter two are likely to strongly affect 
tree population growth (Caswell, 2001).

This method is also data‐intensive, using on average 104 prov‐
enances and 34 gardens (range: 4–195 provenances, 4–62 gardens, 
Figure 2c), and, even so, frequently requires extrapolating fitted cli‐
mate responses beyond the conditions observed in any experimen‐
tal gardens to make forecasts (Wang, Hamann, Yanchuk, O'Neill, & 
Aitken, 2006). Although these studies have some of the best datasets 
with which to test for LA, few did so by comparing inferred climate 
optima or breadths to historical climate conditions across prove‐
nances (but see O'Neill, Hamann, & Wang, 2008; Wang et al., 2010; 
Yang et al., 2015). Finally, very few of the response function studies 
tested the ability of fitted climate functions to predict responses of 
other populations or gardens not used in the model fitting process, 
or evaluated the potential for different model structures or parame‐
ter uncertainty to substantively alter forecasts (Table 1, Figure 2d).

2.2 | Summary of past approaches

While the studies we found differ in many ways (Figure 2), some 
common issues emerge from our survey. We review these issues in 
this section, before turning to suggestions to address each of them 
in the following section.

First, while studies employing each method differ in the type 
and number of intraspecific lineages they considered, very few could 
clearly identify LA at the geographic scale being modeled (Table 1, 
Supporting Information Appendix S2). This is a critical consideration, 
as the spatial scale of LA to climate, relative to dispersal rates and 
the velocity of climate change, could have profound consequences 
for distribution forecasts. Instead, the type of intraspecific variation 
included in forecasts has primarily been determined by data avail‐
ability and modeling approach rather than biological considerations; 
mechanistic models and response function studies primarily incor‐
porated G × E at the level of populations, whereas SDMs recognized 
coarser intraspecific groups (Figure 2a).

Second, most studies used only observational data (Figure 2b) to 
assess differential responses to climate. Although observational data‐
sets can be suggestive of LA effects, experiments that disentangle 
genetic and environmental effects on performance are necessary to 
rigorously test for LA to climate. All of the response function mod‐
els used data from field common garden experiments, and in addi‐
tion, they were the exception to the generally low replication used 
in data collection or analysis, including many more intraspecific lin‐
eages on average than either mechanistic models or SDMs (Figure 2c). 
However, of the 12 models that were parameterized using experimen‐
tal data, only one used controlled climate manipulations (Angert et al., 
2011) to unambiguously pinpoint climate adaptation, and no experi‐
mental study controlled for maternal effects, such as environmental 
effects on offspring quality (Mousseau & Fox, 1998), which can mask 
genetically based environmental responses (Kawecki & Ebert, 2004).

Third, although we found some effort at model validation, often 
these efforts did not assess the added uncertainty associated with 
incorporating LA into distribution forecasts. SDMs were the only 
models to incorporate uncertainty in future climate conditions when 
making forecasts, and were also more likely to compare intraspecific 
models to forecasts from a species‐wide model (Table 1, Supporting 
Information Appendix S2), even though it would be straightfor‐
ward to do both using other approaches. However, most models, 
especially SDMs, were cross‐validated to a portion of the dataset 
(Figure 2d). Cross‐validation cannot assess the ability of a model 
to accurately extrapolate to new lineages and environments, which 
necessarily occurs when forecasting responses across the species’ 
range. Studies using mechanistic models were a notable excep‐
tion; every mechanistic model was validated using an independent 
dataset on distribution or performance. This approach provides a 
rigorous test of the underlying climate‐performance models, by 
evaluating their ability to predict the performance of new lineages 
under new environments as well as testing the relevance of specific 
performance metrics for determining distributions.

Finally, there were several other aspects of LA that were gen‐
erally ignored in published studies that, while requiring additional 
data, could also have major impacts on species’ responses to cli‐
mate change. None of the studies we reviewed included climate 
responses across the entire life cycle of an organism or allowed 
climate tolerances to continue to evolve over time (Appendix S2). 
Only three studies considered LA to aspects of the local environ‐
ment other than climate (Hu et al., 2017; Schwalm et al., 2016; 
Wang et al., 2010), and none considered LA to biotic drivers such as 
interacting species. Only two studies included empirical estimates 
of dispersal rates (Cacciapaglia & van Woesik, 2018; Morin et al., 
2008) and none considered gene flow among intraspecific lineages 
or locations. We discuss each of these considerations, and their po‐
tential impact on species’ forecasts, in greater detail below.

3  | IMPROVING FOREC A STS OF CLIMATE 
CHANGE EFFEC TS IN THE FACE OF LOC AL 
ADAPTATION

Having reviewed how recent papers have attempted to include in‐
traspecific variation, ideally reflecting LA, into climate change fore‐
casts, we now turn to approaches that could be used to improve such 
analyses. In our discussion, we start with steps that apply to current 
approaches and end with methods that either require new data or 
employ analytical methods that the recent papers did not utilize.

3.1 | Better addressing forecast uncertainty 
associated with local adaptation

In order for forecasts to be useful, they must accurately reflect 
the uncertainty inherent in any distribution model (Araújo & New, 
2007). Incorporating LA into forecasts increases the complexity 
of distribution models (Figure 3), yet uncertainty in the strength, 
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pattern, and geographic scale of LA has rarely been addressed. 
The spatial scale of local climate adaptation will differ within and 
among species depending on the steepness of environmental gra‐
dients, rates of gene flow, and the potential for phenotypic plastic‐
ity (Kawecki & Ebert, 2004; Richardson, Urban, Bolnick, & Skelly, 
2014; Slatkin, 1987). Further, both performance and climate are 
highly multidimensional and locally adapted lineages will likely 
exhibit a range of responses across vital rates and environmental 
drivers (Figure 3). Climate responses are also frequently asym‐
metric, with sharp declines beyond some upper climate threshold 
(Angilletta, 2009; Deutsch et al., 2008; Martin & Huey, 2008). 
Alternative functional forms for modeling climate responses will, 
in particular, impact forecasts that extrapolate beyond the range of 
available data (Figure 3).

However, we found few examples of studies that carefully eval‐
uated these sources of model and parameter uncertainty (Table 1), 
all of which arise when incorporating LA. Alternative models of LA, 
including different environmental drivers, intraspecific groupings, or 
functional forms for climate responses, could be integrated by aver‐
aging predictions weighted by AIC or some other measure of relative 
support (Akaike, 1974; Burnham & Anderson, 2004). For example, 
model‐averaged forecasts could be used to reflect uncertainty in 

whether vital rates exhibit Gaussian vs. asymmetric responses to 
climate (Figure 3). Within a given model structure, uncertainty in 
the values of key parameters can be propagated into forecasts using 
Bayesian or bootstrapping approaches (Merow et al., 2014; Wang 
et al., 2010) or quantified with sensitivity analysis (Buckley, 2008). 
Finally, establishing a range of forecast outcomes can be an effec‐
tive tool to understand the sensitivity of predictions to assumptions 
for which few data are available, such as comparing models with or 
without LA (e.g., Angert et al., 2011; Pearman et al., 2010).

Increasingly, researchers have recognized that species’ fore‐
casts should convey uncertainty (Buisson, Thuiller, Casajus, Lek, 
& Grenouillet, 2010; Guisan et al., 2006; Hartley, Harris, & Lester, 
2006), but this needs to include the uncertainty associated with the 
pattern, strength, and geographic scale of LA. In particular, we have 
little understanding of how LA compares to the effects of other, 
well‐known sources of uncertainty in distribution forecasts, such as 
different modeling algorithms, climate forecasts, or dispersal scenar‐
ios (Buisson et al., 2010; Engler et al., 2009).

Given these multiple sources of uncertainty in fitting models 
that include LA, collection of independent data that can be used 
to validate model predictions should be a high priority, to quan‐
tify both the accuracy of fitted climate responses and their ability 

F I G U R E  3   Steps to better account for 
uncertainty arising from local adaptation 
in species distribution forecasts. The 
process of building a distribution 
model should consider the potential 
for local climate adaptation to occur at 
different geographic scales, to follow 
different response curves, and to involve 
multiple vital rates and environmental 
drivers. Because of the uncertainty in 
model structure and parameter values, 
independent data should be used to 
validate fitted climate responses to new 
lineages or environments (open points 
and solid lines show original data and 
fitted Gaussian curve, solid points and 
dashed line show new data and updated 
asymmetric curve), as well as predicted 
distribution or abundance at new sites 
(open points show sites used to fit original 
model, and solid points show new sites 
used to validate predicted occurrence or 
abundance). Incorporating these sources 
of uncertainty into species forecasts 
will highlight targets for additional 
data collection, resulting in an iterative 
modeling–validation process to improve 
forecast precision [Colour figure can be 
viewed at wileyonlinelibrary.com]
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to capture patterns of distribution (Figure 3). This can include 
laboratory or field experiments that test predicted responses to 
forecasted climate or the collection of data from new populations 
not used in the fitting process. In addition to validating climate re‐
sponses, the ability of a model to capture current distributions can 
be evaluated by sampling new locations throughout the species 
range and assessing the ability of the model to predict presence 
of the species at those locations (“present‐casting”); these same 
steps can also be applied to demographic rates or abundances. 
This step is especially important for understanding the ability of 
models to interpolate LA to new populations and environments. 
Independent model validation is a powerful tool, enabling an it‐
erative modeling process whereby key sources of forecast uncer‐
tainty can be identified and targeted for additional data collection 
(Figure 3).

3.2 | Interpolating climate responses throughout 
species’ ranges

An important and outstanding challenge for distribution models is 
how to apply local climate sensitivities, often estimated for a nar‐
row subset of lineages, field sites, or environments, to predict fu‐
ture performance throughout the species range. For example, 
several studies have developed detailed models of varying climate 
responses along environmental gradients, but stop short of fore‐
casting changes in species’ distribution (Crozier, Zabel, & Hamlet, 
2008; Kingsolver & Buckley, 2018). Perhaps the most biologically re‐
alistic approach would be to use historical environmental conditions 
to infer a population's likely response to future climate. Field and 
laboratory experiments suggest that many populations perform best 
under conditions that are similar to their historical climate (Eliason et 
al., 2011; Hoffman et al., 2002; Wilczek, Cooper, Korves, & Schmitt, 
2014). The exceptions are populations from high latitudes or eleva‐
tions, which often perform better under conditions that are more 
benign than they have typically experienced (i.e., “countergradient 
variation”; Conover & Present, 1990; Fangue, Podrabsky, Crawshaw, 
& Schulte, 2009; Reich & Oleksyn, 2008). However, the positive 
effects of warming in these portions of the range may only occur 
with a very limited amount of warming and could also be mitigated 
by biotic effects such as competition that may also increase with 
warming (e.g., Alexander, Diez, & Levine, 2015; Compagnoni & Adler 
2014; Klanderud & Totland 2007). This suggests that tying peak 
performance to average local climate and incorporating geographic 
trends in the breadth of climate/performance relationships could 
be the best way to interpolate climate responses from well‐studied 
populations to new sites throughout the species range. Response 
function studies come closest to this goal, predicting performance 
at any site based on historical and future climate. However, popu‐
lations from similar climates can also show significant variation in 
their responses to climate change (Wang et al., 2006), and this varia‐
tion has so far not been propagated into any forecasts. Indeed, most 
studies we reviewed did not attempt to interpolate patterns of LA, 
but instead aggregated separate forecasts across lineages to predict 

the species‐level distribution under climate change (D'Amen et al., 
2013; Pearman et al., 2010). This approach is most plausible when 
the chosen intraspecific lineages are representative of the entire 
species and the geographic scale of LA is broad, but these assump‐
tions need to be justified.

The potential for adaptation to aspects of the local environment 
other than climate will further complicate interpolation across the 
species range. For example, most distribution models use climate 
drivers such as temperature or precipitation regardless of whether 
this variation occurs across altitudinal or latitudinal gradients, which 
may differ in other variables that modulate climate responses. For 
example, competition with newly co‐occurring species, changes in 
photoperiod, or other nonclimate abiotic factors such as soils could 
limit the ability of lineages to expand their ranges into otherwise 
climatically suitable habitat (Griffith & Watson, 2006; Merrill et al., 
2008). The extent to which climate responses across altitude are pre‐
dictive of climate responses across latitude, or vice versa, remains a 
major outstanding question (De Frenne et al., 2013; Jump, Matyas, 
& Peñuelas, 2009; Matias & Jump, 2015). Wang et al. (2010) consid‐
ered interactions of climate variables with latitude, longitude, and 
elevation to allow for geographically constrained climate responses; 
support for inclusion of these indirect variables suggests the impor‐
tance of other, correlated aspects of the environment (Austin, 2002). 
Only three studies in our review considered LA to nonclimate en‐
vironmental drivers, all of which were abiotic variables such as soil 
type or topography that were assumed to remain static over time. 
No study attempted to include LA to biotic drivers, such as interact‐
ing species, that could also shift under climate change. Intraspecific 
variation can have profound impacts on species interactions (Des 
Roches et al., 2018; Moran, Hartig, & Bell, 2016), suggesting LA to 
biotic drivers is an important consideration in applying climate re‐
sponses across the species’ range and should be a high priority for 
independent model validation.

3.3 | Estimation and use of empirical dispersal and 
gene flow rates

Whether species will be able to disperse sufficiently quickly to track 
shifting climate conditions has profound consequences for forecasts 
of species distribution under climate change (Engler et al., 2009; 
Schloss, Nuñez, & Lawler, 2012). Incorporating LA only magnifies 
the importance of dispersal, as it will determine the redistribution 
of intraspecific lineages throughout the species range, with impor‐
tant consequences for the conservation of genetic variation (Sgro, 
Lowe, & Hoffmann, 2011). For example, several studies have paired 
traditional species‐wide SDMs, which do not incorporate LA in re‐
sponses to climate, with range‐wide genetic sampling to infer the 
loss of unique genetic lineages in the warmer portions of the species 
range due to predicted declines in habitat suitability there (Bálint et 
al., 2011; Buonomo et al., 2018; Neiva et al., 2015). However, other 
studies directly incorporating LA into distribution models have pre‐
dicted warmer‐adapted lineages to expand their distributions under 
climate change (Benito Garzón et al., 2011; Kapeller, Lexer, Geburek, 
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Hiebl, & Schueler, 2012). In general, if populations are strongly 
adapted to local climate conditions, then in situ persistence under 
climate change could be low throughout the species range (see 
Figure 2 in Peterson et al., 2018). In this case, the relative risk to dif‐
ferent lineages will depend critically on rates of dispersal. If dispersal 
rates are high, then warmer‐adapted lineages may be able to persist 
by replacing colder‐adapted lineages, whereas colder‐adapted line‐
ages may have to disperse well beyond the historical range and could 
therefore be at greater risk, particularly for polar or alpine species 
(Figure 1).

Although most distribution forecasts that incorporate LA as‐
sume either unlimited dispersal or compare unlimited and no dis‐
persal scenarios, potential dispersal rates for intraspecific lineages 
will likely have fairly narrow bounds. To better characterize dis‐
persal, some studies have used direct estimates of dispersal rates 
(Cacciapaglia & van Woesik, 2018; Morin et al., 2008), whereas oth‐
ers have assumed dispersal will be constrained by land use bound‐
aries (D'Amen et al., 2013; Hamann & Aitken, 2013; Schwalm et al., 
2016). More complex models could incorporate spatially varying 
dispersal rates due to habitat fragmentation or biotic filters, or even 
the potential for dispersal traits to evolve at shifting range margins 
(Phillips, Brown, Webb, & Shine, 2006; Williams, Kendall, & Levine, 
2016). Placing biologically grounded bounds on dispersal rates will 
improve our ability to predict the redistribution and potential loss 
of genetic lineages and ecologically important traits. Achieving this 
goal would be facilitated by additional computational tools, such as 
MIGCLIM (Engler, Hordijk, & Guisan, 2012) or RangeShifter (Bocedi 
et al., 2014), that can incorporate dispersal into grid‐based distribu‐
tion models (Chipperfield, Holland, Dytham, Thomas, & Hovestadt, 
2011). Although many species‐wide forecasts have emphasized 
greater risk in the warmest portions of species ranges, identifying 
the areas of greatest conservation concern may depend on whether 
the focus is on preserving specific lineages (perhaps as a means to 
ensure adaptability to future conditions range‐wide) or simply main‐
taining healthy populations, regardless of their genetic composition, 
within a particular geographic region (Bálint et al., 2011; Crandall, 
Bininda‐Emonds, Mace, & Wayne, 2000; D'Amen et al., 2013; Sgro 
et al., 2011).

Finally, as intraspecific lineages shift their distributions under 
climate change, a critical question is how gene flow among diver‐
gently adapted lineages could alter climate responses. In all of the 
studies we reviewed, climate sensitivities were assumed to remain 
static into the future. Yet there is a growing effort to incorporate 
ongoing evolutionary dynamics into models of climate change re‐
sponses (Bocedi et al., 2014; Bush et al., 2016; Cotto et al., 2017; 
Kearney, Porter, Williams, Ritchie, & Hoffmann, 2009; Thuiller et 
al., 2013). For example, AdaptR (Bush et al., 2016) allows thermal 
response curves of Drosophilids to evolve under changing climate 
conditions. To our knowledge, none of these approaches have yet 
incorporated intraspecific variation in initial climate responses 
to account for LA to historical climate conditions. However, this 
would be straightforward to implement if the data were available 
(Bush et al., 2016). LA could also be simulated for historical climate 

conditions and then compared to current patterns of intraspecific 
variation to validate their use in forecasting future evolutionary 
change. Dynamic evolutionary models require information on indi‐
vidual variation in responses to climate within populations, such as 
the heritability of thermal optima or breadth. Collecting these data 
for multiple populations to incorporate LA requires experimen‐
tally tractable organisms and thus will be even more difficult than 
current approaches that account for the short‐term effects of LA 
but ignore the potential for future evolutionary change. However, 
where feasible, dynamic evolutionary models that account for LA 
to historical climate conditions could be used to explicitly test dif‐
fering hypotheses about the joint effects of dispersal, gene flow, 
and evolutionary potential in driving species’ responses to climate 
change.

3.4 | Taking advantage of existing local adaptation 
datasets to improve forecasts

The majority of studies we reviewed relied on occurrence data, from 
which inference about LA is extremely constrained (see above). 
However, datasets on local climate adaptation are abundant (Bocedi et 
al., 2013; Fournier‐Level et al., 2011; Jump & Peñuelas, 2005; King et 
al., 2017; Savolainen et al., 2007). Nonetheless, linking LA datasets to 
models that can predict species‐wide patterns of distribution or 
abundance will be challenging. Perhaps the most obvious issue is the 
replication of environmental conditions and populations necessary to 
parameterize a species‐wide distribution model. Among the studies 
we reviewed, those based on experimental data used an average of 
1,050 (median = 134, range = 9–3,600) population × environment 
combinations.1 In contrast, a review of reciprocal transplant 
experiments found an average of 11.2 (median = 4, range = 2–72) 
population–garden combinations2 (Hereford, 2009). However, it may 
be the case that capturing responses at environmental extremes, as is 
common in transplant experiments, is more important than high levels 
of replication to accurately parameterize distribution models with LA. 
Wang et al. (2010) performed a rarefaction analysis for a response 
function model and found that model precision was not greatly 
increased beyond 49 populations and 21 test sites, or about 12% of 
the dataset used to parameterize the full model. However, it would be 
useful to expand this approach to additional datasets and to test the 
effects of capturing populations and gardens representative of 
environmental extremes relative to random subsampling.

Datasets that span multiple years also increase the power to 
observe limiting conditions and detect locally adapted climate re‐
sponses. The studies we reviewed all used time‐averaged measures 
of climate and performance, such as 30‐year climate summary sta‐
tistics (WorldClim bioclimatic variables; Hijmans et al., 2005), histor‐
ical occurrences, or diameter at breast height after 20 years (Wang 

1 We were only able to estimate the number of combinations for 10 of 12 models with exper‐
imental  data, some of which used the same dataset in multiple studies (Appendix S2). 

2 We calculated the number of combinations used in each study in the Appendix of 
Hereford (2009). 
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et al., 2006). However, demographic studies have shown that rare 
bad years can profoundly limit population growth and persistence 
(Boyce, Haridas, Lee, & The Nceas Stochastic Demography Working 
Group, 2006; Lewontin & Cohen, 1969; Tuljapurkar & Orzack, 1980; 
Young, 1994), suggesting that time‐averaged climate and perfor‐
mance measures are both oversimplified and less powerful for de‐
tecting LA than are annual data. Careful analyses of the sensitivity of 
model predictions to levels of replication, including over time, would 
shed light on the potential to use sparser, but more readily avail‐
able, experimental or demographic data sets, while also establishing 
guidelines for the design of future studies. Sparser LA datasets can 
also be used in combination with more readily available presence/
absence or abundance data to infer distribution, using hidden pro‐
cess or inverse modeling approaches (reviewed by Evans, Merow, 
Record, McMahon, & Enquist, 2016).

3.5 | Taking demographic approaches to forecasting 
distribution and abundance

Importantly, no study in our review addressed how the 
population growth rate, perhaps the ultimate determinant of 
distribution (Birch, 1953; Pulliam, 2000), will respond to climate 
change given LA, although Buckley (2008) predicted patterns 
of abundance that several populations might achieve across 
the range. Instead, existing studies have mostly predicted 
occurrence, whereas forecasts of local abundance would be 
far more useful for predicting the ecological and conservation 
impacts of climate change (Cotto et al., 2017; Ehrlén & Morris, 
2015). That said, it is not trivial to determine how LA will impact 
climate responses in the full set of vital rates that determine 
population growth rate, abundance, and the likelihood of 
persistence. Existing approaches, based on data for one or a few 
vital rates, mask the potential for other unstudied vital rates to 
have stronger impacts on population growth or even opposing 
responses to climate variation (Figure 1c, inset). Several studies 
have shown that climate responses differ among developmental 
stages, with some stages more sensitive to projected climate 
changes than others (Levy et al., 2015; McLaughlin & Zavaleta, 
2012; Radchuk, Turlure, & Schtickzelle, 2013; Woods & Wilson, 
2013). For example, Radchuk et al. (2013) found that warming 
improved performance across all life stages of a butterfly, 
except for overwintering larvae which had lower survival under 
warming. Interestingly, population growth was most sensitive to 
this life cycle transition, and population growth rates decreased 
with warming despite positive effects on all other life stages. 
However, none of the studies we reviewed assessed climate 
effects across the entire life cycle of an organism. In addition to 
differences among life stages, different types of vital rates, such 
as survival, growth, or fecundity, could have opposing responses 
to climate change (Bestion, Teyssier, Richard, Clobert, & Cote, 
2015; Doak & Morris, 2010; Peterson et al., 2018), a possibility 
that becomes more likely when populations across a species’ 
entire range are considered (Villellas, Doak, García, & Morris, 

2015). The climate responses of a single vital rate or life stage 
may therefore have little influence on population growth, and 
thus patterns of distribution or abundance, leading to biased 
forecasts of species range shifts.

A landscape demography approach (Gurevitch, 2016) could 
address these challenges by incorporating data on all of the 
vital rates needed to predict population growth rates (Figure 4). 
Landscape demography approaches have the advantage of in‐
corporating density dependence, thereby allowing the predic‐
tion of changes in equilibrial abundance, which provides much 
more information on the ecological impact and conservation 
risk for populations throughout the species range (Ehrlén & 
Morris, 2015). Another advantage of these models is that 
their output can be directly linked to potential conservation 
actions, by identifying the vital rates, life stages, or environ‐
mental changes to which population growth or extinction risk 
is most sensitive (Merow et al., 2014). Although a few studies 
have used demographic models to forecast species’ range re‐
sponses to climate change (Fernández‐chacón et al., 2011; 
García‐Callejas, Molowny‐Horas, & Retana, 2016; Merow et al., 
2014), or used demographic models in conjunction with tradi‐
tional SDMs (Swab, Regan, Matthies, Becker, & Bruun, 2015; 
Ulrey, Quintana‐Ascencio, Kauffman, Smith, & Menges, 2016), 
none have yet included LA in vital rate responses to climate, 
most likely because of the additional data needed to separately 
estimate vital rate responses to climate drivers within multiple 
populations. Incorporating LA will thus require multisite demo‐
graphic studies as well as methods to interpolate vital rate/cli‐
mate relationships throughout the species’ range. Although this 
approach is necessarily data‐intensive, requiring experimental 
climate manipulations or substantial spatial and temporal repli‐
cation, we advocate its adoption in well‐studied or experimen‐
tally tractable systems for which these data can be collected.

Finally, individual‐based models provide perhaps the most flex‐
ible, albeit computationally intensive, frameworks for incorporat‐
ing local adaptation, dispersal, and demographic stochasticity into 
range and abundance predictions. For example, RangeShifter is a 
platform that combines demographic models with individual‐based 
variation in dispersal (Bocedi et al., 2014), and could be used to 
incorporate local adaptation by separately modeling intraspecific 
groups with differing environmental tolerances. Similar but sep‐
arate modeling frameworks include dynamic vegetation models 
(DVMs), which employ approaches that generalize the strategy 
used in the original forest gap models (Snell et al., 2014). These 
models include both demographic processes as well as physio‐
logical attributes and competitive interactions among individuals 
(e.g., Vanderwel, Lyutsarev, & Purves, 2013; Gutiérrez, Snell, & 
Bugmann, 2016). Although there have been repeated calls to use 
this framework to predict climate change effects, including range 
shifts, and also suggestions that these models incorporate local 
adaptation (Anderegg, 2015; Keane et al., 2001; Snell et al., 2014), 
we could find no existing studies using this framework that have 
done so yet.
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4  | BUILDING TOWARD A GENER AL 
FR AME WORK

As we have reviewed, there are myriad approaches and challenges 
to incorporating LA into climate response forecasts and thus at‐
tempting to improve our predictions. In the face of this complexity, 
it is important to return to the importance of trying to do so in the 
first place. First, there is overwhelming evidence that LA to climate 
is strong and extremely common in natural populations (Bocedi et 
al., 2013; Fournier‐Level et al., 2011; Jump & Peñuelas, 2005; King 
et al., 2017; Savolainen et al., 2007). Second, if LA to climate has the 
effects proposed by us and by many others (Atkins & Travis, 2010; 
Bocedi et al., 2013; Valladares et al., 2014), it will profoundly alter 
general patterns of climate change response away from those pre‐
dicted by the dominant paradigm of “trailing‐edge/leading‐edge” 
responses (Hampe & Petit, 2005 has been cited 1,390 times and 
“trailing‐edge leading‐edge climate change” has 52,300 results on 
Google Scholar). While this paradigm is a powerful way to conceive 
of climate responses, if LA is strong, it may also severely under‐
estimate the impacts of climate change on the range, density, and 
genetic diversity of species.

Addressing any of the challenges outlined above requires 
data that are unavailable for many organisms and unlikely to be 
collected within the timeframe needed to make accurate fore‐
casts for conservation planning. For this reason, a high priority 

for climate change biologists must be to test general hypotheses 
about the effects of intraspecific variation in shaping species’ re‐
sponses to climate change. For example, does optimal climate or 
climate niche breadth vary predictably with latitude or elevation? 
Does incorporating LA tend to make species‐level forecasts more 
or less pessimistic? Are warm or cold‐adapted lineages at greater 
risk, and does this depend on dispersal rates? Searching for 
generalities will require consistent reporting of key data across 
studies (Table 2). For example, surprisingly few of the studies we 
reviewed here reported the geographic distribution, historical en‐
vironmental conditions, and inferred climate responses for each 
intraspecific lineage considered. These data, collected across a 
range of taxa, are necessary for any meta‐analysis seeking to un‐
derstand the role of LA in shaping forecasted responses to cli‐
mate change.

Studies that report the results of multiple models for the same sys‐
tem will further clarify the strengths and weaknesses of differing data 
sources and modeling approaches. For example, reporting the results 
of a species‐wide distribution model alongside one incorporating in‐
traspecific variation would allow tests of whether accounting for such 
variation alters either predictive accuracy or forecasted risk. Although 
this question has been the subject of a few individual studies (Angert 
et al., 2011; D'Amen et al., 2013; Pearman et al., 2010), developing a 
species‐wide model is an important step in the model selection and val‐
idation process, and the inclusion of the results of such a model would 

F I G U R E  4   This flowchart outlines 
a protocol for using a landscape 
demography approach to project future 
distribution and range‐wide abundance 
given local adaptation. Statistical and 
modeling steps are in solid boxes, 
demographic data are in dash‐dotted 
boxes, occurrence/abundance data from 
nonstudy sites are in dotted boxes, and 
historic and projected climate data are in 
dashed boxes. DD: density‐dependent; 
DI: density‐independent; λ: low‐density 
population growth rate. Sources of 
uncertainty are in bold [Colour figure can 
be viewed at wileyonlinelibrary.com]

1a. In populations across range for 1+ years, 
measure: i. all vital rates; ii. environmental 
variables; iii. density around individuals

1b. Conduct  laboratory/field reciprocal transplant 
experiments (to broaden environments for 
genotypes from demography populations)

2. Fit multiple models for each vital rate as 
functions of environmental variables and density

3. Select suite of best models (model uncertainty) for each vital 
rate in each population; retain parameter uncertainty in all models

4. Interpolate models for each vital rate for sites across range other 
than demography sites (uncertainty about local adaptation pattern)

5. Construct suite of spatially varying population models that integrate 
environment- and density-dependent models for all vital rates

6. Obtain range-wide historical climate 
data, downscaled to the level of 1a; 
interpolate nonclimate drivers

7a. Test ability of DI version of population 
model to predict (λ > 1) occurrence at 
sites other than those in 1a

7b. Test ability of DD version of 
population model to predict abundance at 
sites other than those in 1a

Validation of population model

8. Refine range-wide population model 
(e.g., reject poorly performing vital rate 
models; add dispersal limitations)

9. Obtain projections, across current 
range and beyond, from multiple 
GCMs (climate model uncertainty), 
downscaled to the level of 1a

10. Project future range using DI 
version of population model, and 
project abundance across future 
range using DD version of population 
model; incorporate all sources of 
uncertainty

www.wileyonlinelibrary.com
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allow more general tests of the effects of LA on species forecasts. 
Similarly, studies that incorporate intraspecific variation through re‐
sponse functions or mechanistic models could easily compare these re‐
sults to SDMs fit to more readily available occurrence data (e.g., Oney, 
Reineking, O'Neill, & Kreyling, 2013).

5  | CONCLUSIONS

Incorporating LA in climate responses has the potential to greatly 
improve forecasts of species’ responses to climate change. A wide 
range of data sources to estimate intraspecific variation in climate 
responses and methods to incorporate this information into species‐
level forecasts already exist. However, current approaches can be 
substantially improved by rigorously testing and validating intraspe‐
cific variation in climate responses across a range of geographic 
scales and thoroughly evaluating the effects of uncertainty asso‐
ciated with LA on forecasts. Landscape demographic models and 
dynamic evolutionary models, while data‐intensive, each hold great 
promise for addressing the effects of climate change across the life 
cycle and of future evolutionary processes. Finally, we hope that by 
continuing to improve and apply these methods across a wide range 
of taxa, we can begin to evaluate more general hypotheses for the 
ways in which LA may alter species’ responses to climate change.
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