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Abstract
1.	 Species distribution models (SDM) have been increasingly developed in recent 

years, but their validity is questioned. Their assessment can be improved by the 
use of independent data, but this can be difficult to obtain and prohibitive to col-
lect. Standardized data from citizen science may be used to establish external 
evaluation datasets and to improve SDM validation and applicability.

2.	 We used opportunistic presence-only data along with presence–absence data 
from a standardized citizen science program to establish and assess habitat suita-
bility maps for 9 species of amphibian in western France. We assessed Generalized 
Additive and Random Forest Models’ performance by (1) cross-validation using 
30% of the opportunistic dataset used to calibrate the model or (2) external vali-
dation using different independent datasets derived from citizen science moni-
toring. We tested the effects of applying different combinations of filters to the 
citizen data and of complementing it with additional standardized fieldwork.

3.	 Cross-validation with an internal evaluation dataset resulted in higher AUC (Area 
Under the receiver operating Curve) than external evaluation causing overestima-
tion of model accuracy and did not select the same models; models integrating 
sampling effort performed better with external validation. AUC, specificity, and 
sensitivity of models calculated with different filtered external datasets differed 
for some species. However, for most species, complementary fieldwork was not 
necessary to obtain coherent results, as long as the citizen science data were 
strongly filtered.

4.	 Since external validation methods using independent data are considered more 
robust, filtering data from citizen sciences may make a valuable contribution to the 
assessment of SDM. Limited complementary fieldwork with volunteer's participa-
tion to complete ecological gradients may also possibly enhance citizen involve-
ment and lead to better use of SDM in decision processes for nature conservation.

K E Y W O R D S

amphibians, biodiversity conservation, data culling, data filtering, external evaluation, habitat 
suitability modeling, sampling effort

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-7013-929X
http://creativecommons.org/licenses/by/4.0/
mailto:florence.matutini@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.7210&domain=pdf&date_stamp=2021-03-10


     |  3029MATUTINI et al.

1  | INTRODUC TION

In the current context of biodiversity loss, a stronger relationship 
between conservation science and citizen participation could help 
to make conservation actions more effective (Forrester et al., 2017; 
Lewandowski & Oberhauser,  2017). Availability of data from citi-
zen sciences has considerably increased over the past few decades 
(Dickinson et al., 2010; McKinley et al., 2017). This data have great 
potential because (a) large quantities of data can be collected over 
large areas, which would be difficult and expensive for researchers 
to collect; (b) data may be collected over long time periods, which is 
especially useful for studying the effects of climate and landscape 
changes on population dynamics at large scales; (c) citizens are in-
volved in the research process, thereby gaining knowledge, and their 
involvement might lead to improved implementation of biodiversity 
conservation action (Dickinson et al., 2010; McKinley et al., 2017). 
However, quality of data from participatory sciences is heteroge-
neous and different methods have been developed to boost data 
accuracy and account for bias, including interactive project develop-
ment, volunteer training, expert data validation, and statistical mod-
eling improvement (Kosmala et al., 2016). Although researchers have 
been skeptical about the value of datasets from citizen science, re-
cent publications show that some could be as valid as data collected 
by professional scientists (Kosmala et al., 2016). This is conditional 
on such data being judged in context (i.e. according to the sampling 
methods used, program objectives, and applications) on the use 
of rigorous data sorting and analyses (Isaac et al., 2014; Robinson 
et al., 2020; Steen et al., 2019).

Opportunistic presence-only data collected by citizens at large 
scales have contributed to the expansion of species distribution 
models (SDM) over the past twenty years, particularly for biologi-
cal conservation applications (Guisan & Thuiller, 2005). The validity 
of presence-only SDM is, however, increasingly questioned as well 
as their applicability (Barve et al., 2011). Presence-only data come 
from different source databases reduced to simple species presence 
records and mostly collected in an unstandardized way by volun-
teers. In contrast to presence–absence data, they are abundant but 
have poor quality, few metadata and come from different sources 
(Robinson et  al.,  2020). This introduces numerous sources of bias 
that need to be assessed and accounted for in modeling processes 
(Guillera-Arroita et al., 2015; Phillips et al., 2009). Common problems 
are heterogeneous sampling effort, conditions and methods, impre-
cise spatial and temporal resolutions, and different levels of exper-
tise among observers (Dickinson et al., 2010; McKinley et al., 2017; 
Phillips et  al.,  2009; Schulman et  al.,  2007). Different methods 
have been developed to correct these biases, including sorting or 
weighting presence-data to reduce identification errors and pseudo-
replication linked to sampling effort (Guisan & Theurillat,  2000; 
Phillips et  al.,  2009) and/or using sampling effort assumptions 
to establish pseudo-absence sampling strategies (Barbet-Massin 
et al., 2012). Understanding the structure and intensity of sampling 
effort in space is essential to determine whether an undetected 
species is truly absent. For example, it may be conditioned by site 

accessibility (Kadmon et al., 2004; Phillips et al., 2009), site attrac-
tiveness, or observer distribution (Phillips et  al.,  2009; Robinson 
et al., 2018). Not accounting for heterogeneous sampling effort or 
using erroneous assumptions to define it can lead to overassess-
ment of model accuracy and/or false interpretation (Guillera-Arroita 
et al., 2015; Phillips et al., 2009; Schulman et al., 2007).

SDM validation is challenging (Vaughan & Ormerod, 2005) but is 
a crucial step for applying results to conservation objectives. There 
is still debate about SDM validity, especially when presence-only 
data are used to calibrate models (Barve et al., 2011). Using data with 
the same spatial bias to calibrate and assess a model tends to over-
estimate prediction accuracy, by modeling observation processes 
more than ecological processes therefore producing erroneous re-
sults. Currently, testing model accuracy with a fully independent 
dataset is considered the most robust method for assessing SDM 
(Araujo et al., 2005; Guisan et al., 2017). However, obtaining an ex-
ternal dataset for large-scale studies is often cost prohibitive and 
exploiting data from standardized citizen science programs may in 
some cases provide the solution. For example, Robinson et al. (2020) 
have shown that using filtered large-scale citizen science data 
for SDM calibration can improve model accuracy. Alternatively, 
detection–nondetection data from more standardized citizen sci-
ences programs which are rarer than opportunistic data but have 
higher quality could provide presence–absence sets for external val-
idation of presence-only SDM. In addition, using presence-only and 
presence–absence data at different stages of the modeling process 
could be a method for combining different datasets with heteroge-
neous quality which is a current challenge to improve SDM validity 
(Robinson et al., 2020; Zipkin & Saunders, 2017).

Amphibians are among the most threatened taxa in the world 
with rapid and widespread population declines (Stuart et al., 2004). 
They are particularly sensitive to fragmentation and habitat loss 
(Cushman,  2006) because they need different resources during 
their life cycle involving movements (seasonal migration and dis-
persion) between aquatic sites (usually ponds) and terrestrial areas 
(Cushman,  2006; Sinsch,  1990). Many citizen science programs 
have been initiated for monitoring amphibian species (De Solla 
et al., 2005; Schmeller et al., 2009), and data collected have been 
used in some conservation studies to describe population trends 
(Petrovan & Schmidt,  2016), road effects (Cosentino et  al.,  2014), 
climate change (Préau et al., 2019), and large-scale species distribu-
tions (Brown et al., 2016). Despite abundant literature on amphibian 
ecology and the availability of several citizen science databases, few 
studies have attempted predictive amphibian distribution models 
at large scales (Brown et al., 2016; Graham & Hijmans, 2006; Préau 
et al., 2019). Therefore, amphibian data could be suitable for testing 
the capacity of different types of citizen data (presence–absence or 
opportunist) for calibrating and assessing SDM.

Here, we compare the predictive performance of presence-only 
SDM for nine amphibian species using different types of data (in-
ternal presence-only or external presence–absence) from citizen 
science programs for their assessment. We also test the opportu-
nity to use filtered standardized citizen science data to constitute 
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the independent dataset for external evaluation. We hypothesized 
that (1) the type of data used for validation (internal or external) 
would influence the assessment of model accuracy; (2) standardized 
citizen science datasets might be used as independent data for ex-
ternal evaluation of SDM using data filters and/or complementary 
fieldwork.

2  | MATERIAL S AND METHODS

2.1 | Study area

Our study was performed in Pays de la Loire (western France), a 
region covering 32,082 km2 with low relief and bordering on the 
Atlantic Ocean to the west. The region has an extensive hydro-
graphic network organized around the River Loire and its tributaries, 
influencing local climate and landscape configuration. Agricultural 
landscapes dominate the region and traditional hedgerow network 
landscapes associated with extensive livestock farming are recog-
nized for their conservation value. Such mosaics of small pastures 
delimited by hedgerows and small woods and generally associated 
with dense pond systems (Baudry et  al.,  2000) are favorable for 
many organisms including endangered species such as some amphib-
ians species (Boissinot et al., 2019). With 21 known species (for 43 
species recorded in France), the region has a high responsibility for 
the preservation of amphibians and their habitats, including tradi-
tional hedgerow landscape and wetlands.

2.2 | Biological data

We studied habitat suitability of 9 amphibian species: Bufo spino-
sus, Hyla arborea, Rana dalmatina, Rana temporaria, Triturus cristatus, 
Triturus marmoratus, Lissotriton helveticus, Salamandra Salamandra, 
and Pelodytes punctatus. Two types of amphibian data were used: 
(1) opportunistic data from a citizen database with presence-only 
records for model calibration and internal evaluation and (2) stand-
ardized detection–nondetection data from a citizen science program 
and complementary field work for external evaluations. A more de-
tailed description of the datasets and complementation strategies is 
available in Appendix S1.

2.2.1 | Opportunistic presence data (calibration and 
cross-validation dataset)

We accessed presence-only occurrences from a regional data-
base for the period 2013–2019. 86% of the dataset was collected 
by citizens and recorded online (website or associated mobile ap-
plication) and 14% by various professional organizations involved 
in nature protection. All data were compiled for the regional Atlas 
of amphibians by a French nongovernmental organization (French 
BirdLife partner—LPO). See Appendix S1: Table S1 for data sources. 

We retained only species with enough data according to number of 
predictors used (i.e. at least 477 presence cells; see Appendix  S1: 
Table S2). We selected only precise GPS records (precision of the 
observation under 50 m), and we checked all data for anomalies in 
geographical location or species identification.

For each species, we sorted data to reduce spatial autocor-
relation by projecting presence data on a 500 m resolution grid 
and retaining only cells containing at least one occurrence as 
presence cells for the analyses (Guisan & Theurillat,  2000). We 
chose a 500 m resolution as it is the mean size of species’ home 
ranges (Semlitsch & Bodie, 2003). Finally, we excluded all oppor-
tunist data intersecting cells used for external validation described 
below to increase independency between calibration and valida-
tion sets.

2.2.2 | Standardized detection–nondetection data 
(external validation datasets)

For external validation, we first extracted detection–nondetection 
amphibian data for the period 2013–2019 collected as part of 
a citizen science program called “Un Dragon dans mon Jardin” 
(Appendix S1: Section 1.2). We retained 576 sites which were moni-
tored at least 3 times between February and June during at least one 
year and following a standard method commonly used for amphibian 
community surveys (Boissinot et  al.,  2019). We called this dataset 
CS.0 (see Figure 1). Some large areas of the region were not sam-
pled due to lack of observers so that data were clustered near cities, 
with spatial autocorrelation. Therefore, with help from volunteers, 
we completed this dataset with some additional fieldwork and ap-
plied filters.

To complete and filter CS.0, different strategies were used. First, 
we organized complementary fieldwork in 2018 and 2019 to com-
plete two landscape gradients (woody element density and pond 
density) which are two variables known to strongly affect amphib-
ian distribution and which are relevant in our regional context. All 
sites were selected randomly but so as to maximize and decorrelate 
the two landscape gradients in different areas (see Appendix  S1: 
Section 1.3). In total, 263 sites were monitored: 132 sites by experts 
in 2018–2019 (called PRO, see Figure 1) and 131 by 75 volunteers in 
2019 (called VOL, see Figure 1). All data (CS.0, PRO and VOL) were 
projected on the same 500 m resolution grid. One further problem, 
common in citizen science programs (Geldmann et al., 2016), is that 
only aquatic sites are surveyed while areas known to be very unsuit-
able for amphibians such as urban areas and intensive agriculture 
are generally excluded. To reduce this source of bias, we randomly 
selected 5% more 500 m grid cells in totally urbanized areas without 
aquatic sites and 5% more grid cells in homogeneous croplands with-
out trees or ponds and we attributed “absence” values to each after 
field checks (called ABS, see Figure 1). These landscapes represent 
9% of the total area of the region.

Second, we applied different filter combinations to establish 
subsets from CS.0, PRO, and VOL (see Figure 1):
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1.	 A minimum distance of 1  km between two grids containing 
data;

2.	 Threshold values to validate nondetection as absence data and 
exclude under-sampled sites, defined as a minimum sampling 
effort required to detect a species based on the species’ de-
tectability group and observer level of expertise. Four species 
detectability groups were defined from occupancy studies in 
France (Boissinot, 2009; Petitot et al., 2014) and the UK (Sewell 
et al., 2010). Observers were classed as either expert, intermedi-
ate, or novice using 3 criteria: number of years of participation, 
number of species observed and permit holder for amphibian 
capture. A “novice” observer was considered more likely to miss 
or misidentify a species which was actually present than an “ex-
pert” observer for the same considered survey effort. In addition, 
novice observers did not use sampling nets, influencing detect-
ability, in particular of Urodeles. Based on our observer classes 
and sampling methods used (e.g., acoustic, visual and/or fishing), 
we set threshold values for the minimal sampling effort needed 
to validate absence data, depending on species detectability (see 
Appendix S1: Section 1.4 for details) and according to the results 
from Boissinot (2009) for minimum sampling effort needed to de-
tect a focal species (with 95% probability) in a similar biological 
and landscape context.

3.	 Target species to valid nondetection as absence, as recommended 
by Phillips et al. (2009). So, if species A with the same detectability 
as species B is detected at a site, then species B is likely to be truly 
absent (see Appendix S1: Section 1.5 for target species list).

4.	 Stratified sampling on final prediction maps (see STRAT_CS and 
STRAT_ALL in Figure  1). We established independent datasets, 
stratified by model predictions for each species (Newbold et al., 
2010; Guisan et al., 2017) with equal random sampling of valida-
tion cells with presence or absence data in 4 habitat suitability 
classes predicted (i.e. [0;0.3[, [0.3;0.5[, [0.5;0.7[ and [0.7;1]). We 
obtained an equal number of validation cells by predicted suit-
ability class (see 1.4.3 for predictive map used).

2.3 | Environmental dataset and variables

We assembled environmental data relevant to amphibian ecology 
and of importance in the study region (Guisan et al., 2017). A more 
detailed description of variables with associate references is avail-
able in Appendix S2: Table S1.

Bioclimatic variables were accessed from a compilation of 
climate data for the period 1950–2000 at a spatial resolution of 
5 km2 (Hijmans et al., 2005). An altitude variable was derived from 
the U.S. Geological Survey's Hydro-K dataset, at the same spatial 
resolution. We performed a principal-components analysis (PCA) 
on 11 bioclimatic variables relevant for amphibians and the altitu-
dinal layer to produce 2 uncorrelated axes (see Appendix S2: Table 
S4 and Figure S2). Land-cover data were downloaded from the 
highly detailed vector database OCS GE 1.1 (IGN 2019), the Theia 
OSO Land Cover Map 2017 (available at www.theia​-land.fr), and 
from BDTopo (IGN 2019). This was coupled with a more detailed 

F I G U R E  1   Description of datasets, filters and complementation used for external evaluation derived. Number of data (n grid cells) given 
for T. marmoratus, for 1 iteration only and s3. CS: data derived from the citizen science data set; SUP: additional data collected by volunteers 
(VOL) and professionals (PRO)

http://www.theia-land.fr
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regional inventory of hedgerows (from 2005 to 2008) and ponds 
(2012) and a national farming database from the EU LPIS (Land 
Parcel Identification System 2016) used to classify agricultural 
areas (see Table 1).

We calculated land-cover variables in windows composed of 
a 500 m grid cell with a buffer of 300 m (see Table 1). This took 
into account landscape context based on species’ dispersal ca-
pacities as well as the resolution of the species dataset (Guisan & 
Thuiller, 2005). Distance and home range differ among amphibian 
species but a 1 km circle may be accepted as an average maxi-
mum range (Collins & Fahrig, 2017). Collins and Fahrig (2017) and 
Boissinot et al. (2019) show that landscape variables affect Anuran 
occupancy and diversity at this scale in agriculture-dominated 
regions. We use the same environmental variables for all species 
(see Table  1) except B. spinosus for which “pond density” (water 
point <5,000 m2) was substituted by “water point density” because 
of this species’ ability to reproduce in larger water bodies with fish 
(Boissinot et al., 2019).

All predictive variables were centered and scaled. The spatial 
correlation between environmental predictors was investigated 
using the variance inflation factor (VIF) as a measure of multicol-
linearity and Pearson's correlation tests with VIF < 6 and r < 0.6 as 
advised by O’Brien, 2007 (see Appendix S2: Tables S2 and S3).

2.4 | Habitat suitability modeling

2.4.1 | Statistical models

Different modeling algorithms can lead to varying results ac-
cording to heterogeneous sensitivities and calculation processes 
(Thuiller et al., 2009). Therefore, consensus models based on multi-
modeling approaches (ensemble modeling) can improve final results 
by reducing “noise” associated with individual model errors (Araujo 
et al., 2005; Meller et al., 2014; Thuiller et al., 2009). For each species, 

we used one regression-based approach (Generalized Additive 
Models, GAM) and one machine-learning algorithm (Random Forest, 
RF) to predict and assess habitat suitability within the studied re-
gion with 50 bootstrap replicates. Presence points were randomly 
split 50 times into a training set (70% of the whole dataset) and the 
remaining 30% were used as testing set for internal evaluation (see 
1.4). To construct these models, we used biomod2 package (Thuiller 
et al., 2009) in R environment v. 3.5.3 (R Development Core Team, 
2019).

2.4.2 | Background data and pseudo-
absence selection

Modeling habitat suitability for a species with GAM or Random 
Forest requires both presence and absence data. In order to 
overcome the problem of missing absence data needed for most 
SDM, pseudo-absence selection strategies have been developed 
to select absence data where real absence is most likely (Barbet-
Massin et al., 2012; Phillips et al., 2009). We tested three strate-
gies for generating artificial absence points: (s1) simple random 
selection of background points within the studied region (Guisan 
et  al.,  2017); (s2) random pseudo-absence selection excluding 
known presence points (Engler et al., 2004); (s3) random pseudo-
absence selection constrained to take sampling effort into account 
(see Appendix S3 for method). The latter strategy aimed to select 
pseudo-absences where true absences were more likely. For this 
strategy, we considered three main sources of bias in pseudo-
absence selection: accessibility, linked to distance from roads or 
urban areas (Barbet-Massin et al., 2012; Kadmon et al., 2004), at-
tractiveness, relating to oversampling in protected sites or tourist 
areas (Phillips et al., 2009; Robinson et al., 2018) and observer ef-
fort, because certain administrative areas are covered by particu-
larly active nature protection organizations (see Appendix S3). For 
each strategy, the number of artificial absences was fixed equal 

TA B L E  1   Environmental variables used for species distribution modeling of each amphibian species in Pays de la Loire region. Associated 
references are available in the Appendix S2: Table S1

Variable category Code Variable description Original resolution

Climatic CLIM_1 First axis from a PCA on 12 worldclim variables and altitude 2.5 arc-min/5 km

CLIM_2 Second axis from a PCA on 12 worldclim variables and altitude 2.5 arc-min/5 km

Land cover %WOOD_DM Proportion of deciduous and mixed forest 5 m

%WOOD_C Proportion of coniferous forest 5 m

%CROP Proportion of crop 20 m

%PASTURE Proportion of permanent pasture 20 m

NB_PONDS Pond density (or water point density) 5 m

L_HEDGE Hedgerow density 5 m

L_ROAD_1ST Primary road density outside urban areas 5 m

L_ROAD_2ND Secondary road density outside urban areas 5 m

L_RIVER Canal and river density 5 m

%URBAN Proportion of urban area 20 m



     |  3033MATUTINI et al.

to the number of presence data (Barbet-Massin et  al.,  2012; Liu 
et al., 2019) and we performed 10 replicates of the artificial ab-
sence generation processes.

2.4.3 | Ensemble modeling

Finally, we conducted ensemble modeling by calculating the 
median value of (1) all individual maps generated by GAM and 
Random forest (i.e. 500 maps/algorithm) (Thuiller et  al.,  2009) 
to compare internal versus external evaluation for each species. 
Second, we also calculated median values from ensemble maps 
calibrated with 100% of presence-only data to compare different 
external evaluations sets (i.e. 10 maps/algorithm).

2.5 | Internal and external model validation

We first use a cross-validation method using a 30% random 
split of the whole set to asses each model (for pseudo-absence 

selection strategies s1, s2 and s3) with 50 bootstraps repeated 
10 times. We calculated the area under the curve (AUC) of a re-
ceiver operating characteristic (ROC) plot of the predicted model 
habitat suitability scores with (1) the 30% test dataset for inter-
nal validation and (2) with the larger filtered external independ-
ent dataset (e.g., CS.2 + ABS + SUP, see Figure 1) using Biomod2 
package (Thuiller et  al.,  2009). AUC is the most common metric 
used in SDM studies, as it has the advantage of being threshold 
and prevalence independent and has been accepted as the stand-
ard measure for assessing SDM accuracy (Guisan et  al.,  2017). 
AUC > 0.50 signifies that the model has better prediction than a 
random model.

Second, we calculated AUC values, specificity (true negative 
rate), and sensitivity (true positive rate) of ensemble models cali-
brated with 100% of the presence-only data using different eval-
uation sets derived from the global external dataset used in the 
previous stage (see Figure  1). These calculations (with 100 boot-
straps) were performed using PresenceAbsence package (Freeman 
2012) with a standard threshold value for presence–absence dis-
crimination fixed at 0.5.

F I G U R E  2   Model performance for the 9 studied species assessed by external or internal data using different pseudo-absence selection 
strategies. Assessment by AUC under the ROC for GAM only are shown (see Appendix S1–S4). Artificial absence sampling strategies shown 
are s2 (random pseudo-absence selection excluding known presence points) and s3 (random pseudo-absence selection excluding known 
presence points and adjusted to consider site accessibility and sampling effort). Per strategy, 10 replicates of the artificial absence points 
generation processes with 50 bootstraps for the random selection of the straining set (70%) and the internal testing set (30%). Black dotted 
line indicates the 0.70 threshold above which models have an acceptable level of accuracy (Swets 1988)
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3  | RESULTS

3.1 | Model performance and selection

For each species, the median AUC was higher with internal valida-
tion than external validation for all three pseudo-absence selection 

strategies (s1, s2 and s3), both for GAM and Random Forest (see 
Figure 2 and Appendix S4) with a delta-AUC ranging from 0.05 (T. 
marmoratus) to 0.21 (B. spinosus). With internal evaluation (cross-
validation), all models had excellent (AUC > 0.90) very good (0.80–
0.90) or good accuracy (0.70–0.80) except for the model of B. 
spinosus and H. arborea including sampling effort parameters (s3). 

F I G U R E  3   Habitat suitability maps for six studied species produced using two form of pseudo-absence selection: s2 (random pseudo-absence 
selection excluding known presence points) and s3 (random pseudo-absence selection excluding known presence points and constrained to 
account sampling effort). The black and white map under each pair shows net difference between s2 and s3. Map resolution is 500 m
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However, with external evaluation, only four species had a high level 
of accuracy (AUC > 0.70): S. salamandra, T. marmoratus, P. puncta-
tus, and R. temporaria. For R. dalmatina, T. cristatus, and L. helveticus, 
model accuracies were poor (0.60 < AUC < 0.70) and for B. spinosus 
and H. arborea even poorer (AUC  <  0.60). The strategy s1 (back-
ground data) was not selected neither with internal nor external 
evaluation.

The method used for pseudo-absence selection influenced the 
predictive performance of models, but differences between AUC 
values were minimal (Figure 2). However, s2 (uncorrected sampling 
bias) was the best strategy for six species when internal validation 
was used, while s3 was best for seven species when external vali-
dation was used. Results for RF can be found in the supplementary 
material but do not differ greatly (Appendix S4: Figure S1).

3.2 | Impact of model selection on final habitat 
suitability map

Internal or external validation resulted in different models being 
selected, based on AUC comparison. Therefore, the final habitat 
suitability maps selected by each of these two assessment methods 
would lead to different interpretation and conservation decisions 
(Figure 3). Maps for H. arborea and B. spinosus are not shown be-
cause of poor accuracy (see supplementary results Appendix S4). All 
response curves and associated variable contributions can be found 
in the supplementary material (Appendix S4: Figures S2 and S3).

3.3 | Comparison of external evaluation sets

Values of AUC, sensitivity, and specificity to four species are shown 
in Table 2 (two Anurans and two Urodeles; one forest species and 
one generalist specie each). Results for other species and CS.1 (sim-
ilar to CS.2) are presented in Appendix  S4: Table S3. Considering 
AUC values, evaluation with the external dataset from participative 
science without filter data (CS.0) show more similar model selec-
tion results than internal cross-validation except for R. temporaria. 
Sorting presence data led to decreased sensitivity and increased 
specificity for all species except for S. Salamandra. The models se-
lected (s2 or s3) were similar for most species whether using strati-
fied data from volunteers’ only (STRAT_CS) or stratified data with 
added professional observations (STRAT_ALL), or professional data 
only (PRO). See Table 2 and Appendix S4. We excluded the s1 model 
from the comparison because this model is never selected, either 
with internal or external evaluation.

4  | DISCUSSION

External evaluation with independent data generated lower AUC 
values than cross-validation, which calls into question the validity of 
models validated by commonly used selection threshold values such 

as AUC > 0.70. According to Araujo et al. (2005), internal evaluation 
with nonindependent data always leads to overoptimistic assess-
ment of model performance. Even if cross-validation is better than 
substitution procedures (Araujo et al., 2005; Edwards et al., 2006; 
Vaughan & Ormerod, 2005), split data for internal validation are non-
independent and do not avoid the main limits of correlative models 
in SDMs because of spatial or temporal autocorrelation, especially 
when sampling effort is highly heterogeneous (Edwards et al., 2006; 
Roberts et al., 2017). Our result supports criticisms of certain types 
of SDM and further highlights the need to be careful in their general 
interpretation and assessment (Lobo et al., 2008).

The difference between internal-AUC and external-AUC is par-
ticularly pronounced for the most common and generalist species in 
spite of the large number of available data, especially for B. spinosus 
and H. arborea whose models failed to attain an acceptable level of 
accuracy with external evaluation. Brotons et al. (2004) highlighted 
the difficulty of predicting distributions of the most generalist spe-
cies. However, for such species, the use of filters increases speci-
ficity values considerably and the results are coherent with these 
species’ wide ranging and ubiquitous distributions. Using external 
presence–absence data also makes it possible to exploit the whole 
presence-only dataset for calibration and to use stricter filters to re-
duce sampling bias or data culling to retain higher quality data (Isaak 
et al., 2014; Steen et al., 2019). Our study shows that it is possible 
to apply strong filters (e.g., STRAT_CS) but finally retain reasonable 
sample sizes for most species.

It should be noted that, for four species, R. temporaria, T. marmor-
atus, S. salamandra, and P. punctatus, our results were ambiguous. For 
the first three, all forest-dwelling species or very closely related to 
woodlands (Boissinot et al., 2019), both internal and external valida-
tion methods selected models with sampling effort integrated (s3). 
Two main reasons could explain these results: first, presence data 
may have been insufficient for R. temporaria, and second these spe-
cies’ affinity for forest habitats. R. temporaria is a rare species and is 
more dependent on wet forest, flood meadows, and small streams as 
breeding sites than other species (Boissinot et al., 2015). This species 
has a patchy distribution (i.e. locally abundant but regionally rare) 
and is difficult to detect. Hence, presence data are few in the studied 
area both in the opportunist dataset (N = 477 presence-cells) and 
in the independent dataset (N = 13 presence-cells). As highlighted 
by c, such factors can lead to model over fit, even with a relatively 
small number of variables, resulting in high AUC values. In addition, 
according to Brotons et  al.  (2004), low-density habitat (i.e. forest 
habitat in our region) may be overweighted and it can be difficult to 
assess between good or bad suitability without adapted presence–
absence data. Monitored forest sites are rare in our validation data-
set, and the assumptions we used to define sampling effort may not 
be well adapted for forest specialists. Finally, P. punctatus is a rare 
species but abundant on the Atlantic coast. Unlike the other species, 
it is a pioneer, adapted to open areas, especially primary unvege-
tated habitats such as sand dunes and mudflats with frequent phys-
ical disturbance (Joly et al., 2005). These habitats are mainly located 
near the coast and along the main regional floodplains (Loire Valley), 
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with a high local density of presence data. So this species is also 
patchily distributed and models may be affected by the same bias 
as R. temporaria. Alternatively, the similarity between AUC values 
may also relate to sampling effort bias along the Atlantic coast (e.g., 
Fithian et al., 2015). There results highlight the need to adapt meth-
ods and filters used for each species.

4.1 | Using heterogeneous data from citizen science 
in SDM

Our results show that it is possible to obtain useful external and in-
dependent datasets for model validation from filtered standardized 
citizen science data. Indeed, the use of filters has successfully reduce 
bias and noise in citizen science datasets for SDM in others studies 
(Isaac et al., 2019; Robinson et al., 2018; Steen et al., 2019). In addi-
tion, filtered evaluation dataset showed coherent results according 
to Phillips et al. (2009). Indeed, choosing pseudo-absence data with 
the same bias as occurrence data improved model performance.

Since external independent data are necessary for more robust 
assessment of SDM (Araujo et al., 2005), but prohibitive to collect, 
filtering low quality but large datasets from monitoring to obtain 
more standard and independent data may be worthwhile. In addi-
tion, AUC appears to be more informative when presence–absence 
data are used to assess and compare models than when presence-
background data alone is used (Jiménez-Valverde, 2012). However, 
using detection–nondetection citizen data without filters may also 
lead to erroneous results because of overlapping sources of bias in 

both datasets (e.g., CS.0 selects the same model as cross-validation). 
The large amount of available data allows us to strongly select data 
according to our research objective. Our results using PRO datasets 
are inconclusive for rare species perhaps because their detection 
was insufficiently frequent (e.g., only two observations of R. tempo-
raria for 132 sampled sites). Finally, we found that general rules to 
guide data sorting were difficult to define. Our results were sensitive 
to the type of data used, and the species studied, reinforcing the 
need to define filters according to available data and species’ ecol-
ogy (Steen et al., 2019).

Independence between training and testing sets is an essential 
criterion, but data should also be unbiased or corrected. Selection 
methods have been developed to try to divide the opportunistic data-
set strategically to increase the independence of the testing set for 
cross-validation (see Block-cross-validation in Robert et  al.,  2017). 
However, this method does not make it possible to escape from the 
general biases linked to sampling effort and/or can create extrapola-
tion problems (see Roberts et al., 2017). Using a more standardized 
dataset from a participatory science program (e.g., CS0) for the eval-
uation makes it easier to understand the sources of bias (presence 
of metadata and nondetection data), to better control them and 
to obtain more robust information on the absence data. However, 
these data may also share biases with the opportunistic dataset 
used for calibration. In our case, the sampling of the monitored sites 
(CS0) was partly biased towards volunteers’ place of residence and 
areas with a higher density of observers. These biases were reduced 
through additional sampling involving volunteers. Our results show 
that certain filters, as well as targeted complementary fieldwork, 

TA B L E  2   Model performance according to different filters and complementary fieldwork applied to the external evaluation dataset

Triturus marmoratus Lissotriton helveticus Hyla arborea Rana temporaria

SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC

CS.0 s2 0.63 0.41 0.58 0.69 0.29 0.53 0.82 0.43 0.68 0.71 0.87 0.87

s3 0.65 0.45 0.61 0.64 0.34 0.54 0.78 0.49 0.68 0.86 0.84 0.88

CS.2 + ABS s2 0.59 0.78 0.81 0.67 0.76 0.80 0.71 0.61 0.73 0.64 0.88 0.86

s3 0.58 0.87 0.81 0.62 0.88 0.86 0.68 0.64 0.74 0.82 0.84 0.86

CS.2 + ABS + SUP s2 0.58 0.82 0.82 0.51 0.77 0.68 0.63 0.56 0.63 0.59 0.91 0.85

s3 0.62 0.78 0.81 0.49 0.78 0.74 0.57 0.54 0.63 0.76 0.86 0.85

PRO s2 0.58 0.83 0.85 0.41 0.76 0.61 0.59 0.39 0.51 0.50 0.95 0.71

s3 0.79 0.77 0.83 0.37 0.79 0.64 0.51 0.33 0.54 0.50 0.92 0.71

STRAT_CS s2 0.71 0.72 0.81 0.67 0.81 0.82 0.72 0.64 0.73 0.79 0.57 0.69

s3 0.70 0.69 0.78 0.68 0.82 0.88 0.71 0.63 0.75 0.95 0.60 0.79

STRAT_ALL s2 0.80 0.74 0.87 0.66 0.76 0.78 0.68 0.62 0.70 0.84 0.57 0.73

s3 0.78 0.70 0.83 0.71 0.83 0.89 0.66 0.60 0.72 0.96 0.58 0.81

Note: External datasets used were (see Figure 1): CS.0 (all data from the standardized citizen science dataset); CS.2 + ABS (CS.2 with 10% 
supplementary absence cells in very unfavorable habitats); PRO (data collected by professionals only in 2018–2019); CS.2 + ABS + SUP (citizen 
science data cited before adding all complementary fieldwork by professionals and volunteers); STRAT_CS (stratified data selection from CS.2 + ABS 
with complementary fieldwork by volunteers); STRAT_ALL (stratified data selection from CS.2 + ABS + SUP). Models assessed: s2 (random pseudo-
absence selection excluding known presence points) and s3 (random pseudo-absence selection constrained to account sampling effort and correct 
sampling bias). SEN, sensitivity; SPE, specificity. Bold values show best values between s2 et s3 with delta >0.02 and italic values show species with 
less than 2 presence data. All analyses with a random sampling in presence selection with a distance condition or a stratified random selection were 
performed using 100 bootstraps (mean calculation).
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make it possible to reduce the biases identified and produce con-
clusive results. In addition, the use of a stratified sampling of the 
testing set along the suitability gradient from the SDM results (e.g., 
our STRAT_CS and STRAT_ALL datasets) appears to be a particularly 
interesting method showing stable and consistent results according 
to Phillips et al. (2009).

However, our method may be not applicable in all cases. In our 
study, external data came from a program with general population 
monitoring objectives, using standard methods designed to be ac-
cessible to a wide audience (e.g., novice and professionals). This 
program concerns all amphibians and their habitats, whereas many 
citizen science programs are limited to a particular taxonomic group 
or habitat type (cities, gardens or farms…) and would therefore be 
difficult to extrapolate to wider contexts.

4.2 | Involved stakeholders and citizens in 
conservation research

Our study was part of a wider project for amphibian conservation in 
the Pays-de-la-Loire region of western France. Involving citizens in 
the SDM evaluation process may make conservation action easier 
to implement, through both better shared knowledge and stronger 
personal involvement. Forrester et al. (2017) and Lewandowski and 
Oberhauser (2017) highlighted an increase in conservation advo-
cacy among participants of citizen science projects that might im-
prove access to evidence for conservationists and decision makers 
(Sutherland & Wordley, 2017). Maps are a specially a good tool for 
improving communication between researchers and volunteers in 
the context of citizen science (Zapponi et al., 2017). Indeed, many 
nature protection organizations are already involved in distribution 
atlas projects and naturalists are aware of data collection methods 
and local species distributions. They seek out ways to prioritize field 
observations; making a useful contribution to developing SDMs to 
guide conservation action can be a source of motivation, making 
scientist-volunteer interactions easier.
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