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1 | INTRODUCTION

Monitoring biodiversity is fundamental for conservation and sus-
tainable use of natural resources but governmental, non-govern-

mental organizations (NGOs), and scientific agencies often lack
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Abstract

Citizen science platforms are increasingly growing, and, storing a huge amount of
data on species locations, they provide researchers with essential information to de-
velop sound strategies for species conservation. However, the lack of information on
surveyed sites (i.e., where the observers did not record the target species) and sam-
pling effort (e.g., the number of surveys at a given site, by how many observers, and
for how much time) strongly limit the use of citizen science data. Thus, we examined
the advantage of using an observer-oriented approach (i.e., considering occurrences
of species other than the target species collected by the observers of the target
species as pseudo-absences and additional predictors relative to the total number
of observations, observers, and days in which locations were collected in a given
sampling unit, as proxies of sampling effort) to develop species distribution models.
Specifically, we considered 15 mammal species occurring in Italy and compared the
predictive accuracy of the ensemble predictions of nine species distribution mod-
els carried out considering random pseudo-absences versus observer-oriented ap-
proach. Through cross-validations, we found that the observer-oriented approach
improved species distribution models, providing a higher predictive accuracy than
random pseudo-absences. Our results showed that species distribution modeling
developed using pseudo-absences derived citizen science data outperform those
carried out using random pseudo-absences and thus improve the capacity of spe-
cies distribution models to accurately predict the geographic range of species when

deriving robust surrogate of sampling effort.
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financial resources to support long-term biodiversity assessment
by professional scientists and volunteers (Bland et al., 2015; Kelling
et al., 2018). Collection of field-data is often very expensive and re-
quires a high economic and time effort, even to get a low amount

of information, especially under the ongoing global economic crisis
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which led scientists to adapt to a period of limited availability of re-
search funds (Cagnacci et al., 2012).

In this context, citizen science represents a powerful cost-effec-
tive strategy to collect baseline scientific data by engaging common,
that is, non-professional, people, leveraging the growing public “en-
vironmental awareness” and the increase worldwide in wildlife en-
thusiasts (e.g., McCafferty, 2016; Silvertown et al., 2011; Willemen
et al., 2015). Citizen science is becoming more and more popular
as well as available online; actually, many organizations developed
citizen science projects recruiting the wider public to provide large
quantities of unstructured biodiversity data across large spatial and
temporal extents (Amano et al., 2016; Danielsen et al., 2014; Mori &
Menchetti, 2014; Pimm et al., 2014; Sullivan et al., 2014). Over 500
citizen science projects have been detected worldwide, through a
systematic online research in 2017 (Pocock et al., 2017), promoted
also by the widespread use of smartphones and tablets (Liebenberg
etal.,, 2017; Wang et al., 2014) which have greatly simplified the pro-
cedure to upload records on online platforms (Pocock et al., 2017).
Monitoring biodiversity through citizen science projects is having a
great influence in ecology (Dickinson et al., 2010) and a big variety
of platforms are running nowadays (e.g., iNaturalist.org, essentially
about collating casual observations, and eBird.org, strongly encour-
aging complete lists with associated effort while also allowing for
less structured recordings). Citizen science data often result in a
high number of occurrences recorded over large areas (i.e., countries
or continents), and time spans and at relatively low costs (Hobson
etal.,2017; Mori, et al., 2017; Paul et al., 2014; Willemen et al., 2015).
Opportunistic citizen data have been shown to provide researchers
with well-approximated distribution ranges (or with further data
on existing occurrences) and predictions of habitat use, necessary
to address functional conservation efforts (e.g., Bruce et al., 2014;
Tye et al., 2016). Moreover, citizen science data on online platforms
has allowed researchers to perform studies on biogeography, alien
species range expansion, species natural history, and interspecific
interactions (Chandler et al., 2017; Menchetti et al., 2019; Mori
et al., 2018; Mori & Menchetti, 2014; Sullivan et al., 2014; Vendetti
et al., 2018). Therefore, citizen science is playing an important role
in improving conservation biology, including also natural resource
management and environmental preservation (Devictor et al., 2010;
McKinley et al., 2017; Van der Wal et al., 2015).

Citizen science has the potential to remarkably increase our
biodiversity knowledge (Pimm et al., 2014), but it can be challeng-
ing to identify citizen data that effectively monitor biodiversity
(Kelling et al., 2018). Specifically, the use of citizen science data
for biodiversity assessment is limited by several concerning fac-
tors including the lack of absence data and information on sam-
pling effort (Crall et al., 2011, 2015; Dickinson et al., 2010; Kamp
et al., 2019; Kelling et al., 2018), leading to limited interpretations
(Ottinger, 2010; Conrad & Hilchey, 2011). These are serious issues
which may strongly influence the accuracy of species distribution
models (SDMs). SDMs combine species presence/absence loca-
tions with a set of environmental covariates (e.g., climatic variables)

to identify factors related to species occurrence and thus predict

Ecology and Evolution . Jﬂ
9 e~ WILEY

Open Access,

species distribution to unsampled sites across a landscape (Elith &
Leathwick, 2009). Ideally, species locations should be randomly dis-
tributed through the environmental space and sampling effort equal
across the landscape, which is rarely the case citizen science data
(Yackulic et al., 2013). When developing SDMs, the lack of absence
data, and/or information on sampling effort can both inflate the spe-
cies' presence in localized areas and cause some environmental hab-
itats to be overlooked, increasing the likelihood of type | errors (false
positives) and thus generating misleading predictions (Roy-Dufresne
et al., 2019). To overcome these issues, presence-only SDMs use
pseudo-absences instead of real absences to predict species dis-
tribution but there is still no consensus on the best way to sample
these pseudo-absences (Barbet-Massin et al., 2012).

Surprisingly, most of the studies using citizen science data to
develop SDMs do not attempt to provide reliable pseudo-absences
data but rather investigate data quality developing protocols tested
on citizen science (Delaney et al., 2008; Genet & Sargent, 2003), as
well as smart filters to flag doubtful data uploaded on online data-
bases, often using information contained within the citizen data, for
example, observation date, ID of the observer (Crall et al., 2015).
However, while data from online portals are not without limitations,
data stored in citizen science projects that collect sufficient contex-
tual information describing the observation process can be used to
generate increasingly accurate information about the distribution
and abundance of organisms through SDMs (Elith & Leathwick,
2009; Kelling et al., 2018).

Thus, in this study, we tested a new approach, namely “observ-
er-oriented” approach, to improve SDMs, identifying reliable pseu-
do-absences as well as accounting for (pseudo-) sampling effort
using citizen science data collected by the same observers of the tar-
get species. Basically, instead of using random pseudo-absences, our
approach consists of using records of species of other than the tar-
get species collected by the observers of the target species as pseu-
do-absences and adding proxies of sampling effort (i.e., the number
of total observations, observers, and days in which locations were
collected in a given sampling unit) as additional predictors in SDMs.
We assumed that (a) a given observer of a given species would col-
lect locations of such species when they will find it in the field and
that (b) essential information available in online citizen science re-
positories could be used to derive reliable proxies of sampling effort.

Thus, our aim is to test if SDMs based on “observer-oriented”
approach outperform (i.e., result in higher predictive accuracy than)
those develop using random pseudo-absences.

2 | MATERIALS AND METHODS

2.1 | Presences and observer-oriented pseudo-
absences

We considered presence locations of 15 terrestrial mammal species
(Table 1) collected by citizen scientists during the period 2010-2018

in Italy, extracted from the iNaturalist project “Mammiferi d’Italia”
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Species Occurrences Observers
Capreolus capreolus 976 232
Vulpes vulpes 731 245
Myocastor coypus 673 280
Rupicapra rupicapra 610 141
Erinaceus europaeus® 577 247
Sciurus vulgaris 536 233
Sus scrofa 475 151
Meles meles 439 154
Lepus europaeus 399 159
Sylvilagus floridanus 301 108
Canis lupus 284 73
Cervus elaphus 270 100
Hystrix cristata 193 88
Sciurus carolinensis 141 83
Dama dama 96 52

TABLE 1 Number of presence
occurrences, their observers and resulting
total pseudo-absences collected for

the 15 species of terrestrial mammals
considered in this study between 2010
and 2018

Observer-oriented
pseudo-absences

22,116
22,299
21,892
15,889
20,381
24,290
18,557
20,346
20,207
15,862
12,374
14,354
14,795
13,549
11,055

We considered only data collected between April and October to avoid false pseudo-absences

due to species hibernation.

(www.inaturalist.org/projects/mammiferi-d-italia) which gathers all
the observations of Italian mammals uploaded in the platform and
where species identification is supervised by the authors EM and
MM. We considered only species locations for which geographic
coordinates were provided. The citizen science website iNaturalist
is an open-access and open-source platform aimed to record biodi-
versity worldwide. This platform allows downloading all the occur-
rences using specific queries (i.e., taxon, place, user/observer, date,
etc.).

To select pseudo-absences of each considered species, we listed
their relative observers and then extracted, from iNaturalist online
platform, all the locations of all the species (i.e., including both plants
and animals) collected by these observers. Similar to presence lo-
cations of our 15 target species, we considered only data collected
during the period 2010-2018 in Italy for which geographic coordi-
nates were provided.

2.2 | Study area

Our study area corresponds to the whole ltalian territory (7°49'-
13°91" E; 45°-42° 39" N), which is about 300,000 km?, ranging from
0 to 4,810 m a. s. |. with a climatic gradient from temperate to con-
tinental, to alpine, resulting in high habitat diversity. The ongoing
human population abandonment in the hilly and mountainous parts
of our study area started already 50-60 years ago, lead to a dramatic
decrease of agriculture in favor of shrub-lands, woods, and forests.
Forests, composed by broadleaf or mixed woods and, to a lesser ex-
tent, by coniferous forests are mainly located on the Alps and the
Apennines. Here, grasslands are mainly used only for livestock graz-

ing. Thus, the environment results in a patchy landscape pattern of

forests and open-areas across large zones where most of the human
population live in the main valleys, big cities along the coasts and
plains.

2.3 | Predictor variables

We initially collected 43 predictor variables contiguously available
for the entire study area (Table S1). We considered three topo-
graphic variables (altitude, slope, and landscape roughness), derived
from a digital elevation model of Italy with a spatial resolution of
20 m (www.sinanet.isprambiente.it), 19 bioclimatic predictors col-
lected from the WorldClim dataset (www.worldclim.org/version2 at
a spatial resolution of 30 arc-second, =1 km), 11 land cover variables
(percentage of coniferous, deciduous, and mixed forests, distance to
forests, croplands, grasslands, shrub-lands, water courses, distance
to water courses, rocky areas, and habitat diversity) derived from
CORINE Land Cover vector data (European Environment Agency
2012; www.sinanet.isprambiente.it). Moreover, we also included four
forest structure variables namely density of trees (at a spatial reso-
lution of 1 km; www.elischolar.library.yale.edu/yale_fes_data/1/;
www.figshare.com/articles/Global_map_of_tree_density/3179986),
wood biomass (1 km resolution; www.wageningenur.nl/grsbiomass),
canopy height (at a spatial resolution of 1 km; www.landscape.jpl.
nasa.gov/), and canopy height roughness (as a measure of variation
in canopy height, a proxy for the heterogeneity of the vegetation;
Froidevaux et al., 2016).

Finally, we also considered six anthropogenic features: the per-
centage and distance to human settlements (i.e., urban areas and
villages also derived from the CORINE Land Cover 2012), density of

and distance to roads (OpenStreetMap; www.openstreetmap.org),


http://www.inaturalist.org/projects/mammiferi-d-italia
http://www.sinanet.isprambiente.it
http://www.worldclim.org/version2
http://www.sinanet.isprambiente.it
http://www.elischolar.library.yale.edu/yale_fes_data/1/
http://www.figshare.com/articles/Global_map_of_tree_density/3179986
http://www.wageningenur.nl/grsbiomass
http://www.landscape.jpl.nasa.gov/
http://www.landscape.jpl.nasa.gov/
http://www.openstreetmap.org

MILANESI ET AL.

human population density (GEOSTAT 2011 1 x 1 km grid dataset -
Eurostat - European Commission;

www.ec.europa.eu/eurostat/web/gisco/geodata/reference-
data/population-distribution-demography; Table S1) and artificial
night-time light brightness (NOAA, NPP VIIRS - NASA 2012 with
a spatial resolution of 350 m; www.ngdc.noaa.gov/eog/viirs/downl
oad_dnb_composites.html).

All predictor variables were resampled at a 1 x 1 km grid cell
size, and we calculated the Variance Inflation Factor (VIF; Zuur
et al., 2010) to avoid that multicollinearity among predictors neg-
atively affected SDMs. Specifically, we used a stepwise variable
selection procedure in which variables were removed till the high-
est VIF value was <3 (Zuur et al., 2010). Thus, we removed 17 pre-
dictors because of VIF > 3 (highly related to other predictors; Zuur
et al., 2010; Table S1).

2.4 | Species distribution models

Similar to Milanesi et al. (2019), to develop SDMs avoiding biased
estimation due to single model uncertainty (Thuiller et al., 2009), we
calculated the weighted ensemble prediction (WEP, weighted by the
true skills statistic, TSS; see below) averaging nine different SDMs
namely (a) artificial neural networks (ANN; Ripley, 2007), (b) boosted
regression trees (BRT; Friedman, 2001), (c) flexible discriminant
analyses (FDA; Hastie et al., 1994), (d) generalized additive mod-
els (GAM; Hastie & Tibshirani, 1990), (e) generalized linear models
(GLM; McCullagh & Nelder, 1989), (f) multivariate adaptive regres-
sion splines (MARS; Friedman, 1991), (g) maximum entropy algo-
rithm (MAXENT; Phillips et al., 2006), (h) MAXENT model using the
glmnet package (Friedman et al., 2010) for regularized generalized

OBSERVER-ORIENTED
PSEUDO-ABSENCES
( N=10,000)

TARGET SPECIES
LOCATIONS

RANDOM
PSEUDO-ABSENCES
(N=10,000)
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linear models (MAXNET; Phillips et al., 2017) and (i) random forests
(RF; Breiman, 2001). We developed SDMs through the packages
BIOMOD2 (Thuiller et al., 2016) and MAXNET (Phillips et al., 2017)
in R (R Core Team, 2013).

We found evidence of spatial autocorrelation among models’ re-
siduals through Moran's | correlogram, and thus, similarly to Pasinelli
et al. (2016), we included x- and y-coordinates of species locations
and their interaction in SDMs (then, models residuals where no lon-

ger spatially autocorrelated).

2.5 | Comparison of SDMs developed using random
versus. observer-oriented pseudo-absences

We develop two sets of SDMs, alternatively using (a) totally random
pseudo-absences (hereafter rpa-SDMs) and (b) observer-oriented
approach (hereafter ooa-SDMs, i.e., considering other than target
species locations collected by the observers of the target species
as pseudo-absences and additional predictors related to the total
number of observations, observers and days in which locations were
collected in a given sampling unit, as proxies and to account for sam-
pling effort; Figure 1).

To avoid the possibility that different sample sizes of observ-
er-oriented pseudo-absences (Table 1) might bias our results, we
randomly selected a total of 10,000 observer-oriented pseudo-ab-
sences for ooa-SDMs (equal to the number of random pseudo-ab-
sences in rpa-SDMs; we repeated this procedure 10 times and found
consistent results of the further analyses).

By using a random subsample of 90% of the locations to cali-
brate the models and the remnant 10% to evaluate them (Thuiller
et al.,, 2009), we carried out 10-fold cross-validations to test the

PROXIES OF SAMPLING EFFORT
(N=3)

WEIGHTED ENSEMBLE
PREDICTION
(N=9)

v

PREDICTOR VARIABLES
(N=26)

FIGURE 1 Conceptual framework showing the steps followed to develop species distribution models based on “observer-oriented”

approach (first and second line) and random pseudo-absences (third line)
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predictive accuracy of both rpa- (considering random pseudo-ab-

sences) and ooa(observer-oriented pseudo-absences)-SDMs.
Specifically, we considered two widely used indices to evaluate
model performance: (a) the area under the receiver operating charac-
teristic curve (AUC) and (b) the true skills statistic (TSS). AUC ranges
between 0 and 1 (worse than a random model and best discriminat-
ing model, respectively) while TSS between -1 and 1 (higher values
indicate a good predictive accuracy, while O indicates random pre-
diction). For a visual comparison, we rescaled the resulting maps de-
rived by rpa- and ooa-SDMs to range between 0 and 1. Values close

to O indicate low suitability while close to 1 indicate high suitability.

3 | RESULTS

We considered a total of 6,701 occurrences of our target species
(Figure 2), ranging from 96 for the fallow deer Dama dama to 976 for
the roe deer Capreolus capreolus. All these locations were collected

from a total of 957 observers, ranging from 52 for the fallow deer to

280 for the coypu Myocastor coypus, who collected a total of 237,010
non-target species occurrences (Figure 2), ranging from 11,055
for the fallow deer to 24,290 for the red squirrel Sciurus vulgaris,
which we initially considered as observer-oriented pseudo-absences
(Table 1; Figs. S1-S15).

We generally found that ooa-SDMs had higher predictive accu-
racy than rpa-SDMs, considering both AUC and TSS. Specifically,
the red fox Vulpes vulpes and the gray squirrel Sciurus carolinensis
showed the highest and the lowest validation statistics, respectively,
for both AUC and TSS (Table 2). AUC values of rpa-SDMs ranged
from 0.639 to 0.906 while those of ooa-SDMs ranged from 0.767
to 0.945, on the other side TSS values ranged from 0.271 to 0.776
of rpa-SDMs, while those of ooa-SDMs ranged from 0.436 to 0.814
(Table 2; Figure 3).

We recorded the highest difference between AUC and TSS
values of rpa- and ooa-SDMs for the red fox and the wild boar Sus
scrofa, respectively, while the lowest differences for both validation
statistics were recorded for the Northern chamois Rupicapra rupi-
capra (Table 3).

FIGURE 2 Study area (in gray).

Target species locations in green, total
observer-oriented pseudo-absences (i.e.,
considering other than target species
locations collected by the observers of the
target species) in black
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TABLE 2 Ten-fold cross-validations of
the weighted ensemble prediction (WEP)
of nine species distribution models carried
out on 15 species of terrestrial mammals.
Area Under the Curve (AUC) ranges
between 0 and 1 (worse than random and
best discriminating model, respectively)
while True Skill Statistic (TSS) between
-1 and 1 (high values indicate good
predictive accuracy, O indicates random
prediction). Average values + standard
deviations alternatively using 10,000
random or observer-oriented pseudo-
absences are shown

FIGURE 3 Example of resulting
weighted ensemble predictions for the
European brown hare (first line) and the
red deer (second line) derived from nine
different species distribution models
carried out alternatively using random
pseudo-absences (left) and “observer-
oriented” approach (right). Blue-yellow
scale indicates low-high suitability

4 | DISCUSSION

In this study we compared SDMs developed using species occur-

rences derived from citizen science data but alternatively using

Species

Capreolus capreolus
Vulpes vulpes
Myocastor coypus
Rupicapra rupicapra
Erinaceus europaeus
Sciurus vulgaris

Sus scrofa

Meles meles

Lepus europaeus
Sylvilagus floridanus
Canis lupus

Cervus elaphus
Hystrix cristata
Sciurus carolinensis

Dama dama

Lepus europaeus

Cervus elaphus

Random pseudo-absences

Fcology and Evolution o 12109
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Observer-oriented approach

AUC

0.756 + 0.026
0.639 +0.048
0.796 +0.032
0.905 + 0.026
0.784 + 0.027
0.705 + 0.054
0.697 +0.021
0.685 + 0.053
0.751 +0.033
0.808 + 0.043
0.747 + 0.068
0.831 +0.053
0.724 + 0.067
0.906 + 0.021
0.844 +0.077

Random pseudo—absences

random or observer-oriented occurrences as pseudo-absences.

TSS

0.433 +£0.043
0.271 + 0.079
0.494 +0.063
0.691 + 0.066
0.504 + 0.047
0.351 + 0.075
0.348 +0.031
0.344 +0.083
0.424 +0.053
0.545 + 0.073
0.464 +0.104
0.589 + 0.093
0.439 +0.091
0.776 +0.048
0.621 +0.138

AUC

0.834 +0.026
0.767 + 0.022
0.858 + 0.024
0.914 + 0.017
0.852 +0.026
0.825 + 0.019
0.824 + 0.024
0.799 + 0.031
0.822 + 0.041
0.874 + 0.022
0.835 +0.032
0.882 + 0.049
0.774 + 0.059
0.945 + 0.028
0.856 + 0.074

Re

TSS

0.546 +0.039
0.436 + 0.044
0.568 +0.052
0.693 + 0.045
0.572 +0.051
0.513 + 0.031
0.532 +0.053
0.477 +0.048
0.541 +0.076
0.616 + 0.046
0.582 + 0.079
0.676 + 0.096
0.446 +0.071
0.814 + 0.083
0.691 +0.151

Observer-oriented approach

We found that the “observer-oriented” approach outperforms

the widely used random pseudo-absences approach, and thus, we

provided a better framework showing how opportunistic citizen
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TABLE 3 Difference between average values of Area Under the
Curve (AUC) and True Skill Statistic (TSS) estimated by weighted
ensemble prediction of nine species distribution models carried out
on 15 species of terrestrial mammals alternatively using random
pseudo-absences and observer-oriented approach

A

Species A AUC TSS

Capreolus capreolus 0.078 0.113
Vulpes vulpes 0.128 0.165
Myocastor coypus 0.062 0.074
Rupicapra rupicapra 0.009 0.002
Erinaceus europaeus 0.068 0.068
Sciurus vulgaris 0.12 0.162
Sus scrofa 0.127 0.184
Meles meles 0.114 0.133
Lepus europaeus 0.071 0.117
Sylvilagus floridanus 0.066 0.071
Canis lupus 0.088 0.118
Cervus elaphus 0.051 0.087
Hystrix cristata 0.05 0.007
Sciurus carolinensis 0.039 0.038
Dama dama 0.012 0.07

science data can be used to develop more accurate species distri-
bution models.

4.1 | Citizen science data and species
distribution models

The use of citizen science data has been initially advocated to as-
sess species distribution at large scale, where standardized sampling
is often impracticable (Mori et al., 2019; Van Strien et al., 2013).
However, this method has been recently criticized due to uncertain-
ties associated with underlying sampling processes (Mair & Ruete,
2016). While only citizen science projects can gather sufficient
quantities of species locations, these data are inherently noisy and
heterogeneous (Kelling et al., 2015). Moreover, citizen science data-
sets available on online platforms do not provide information on all
sampling sites (even those were target species where absent) or on
sampling effort, both of which are fundamental to distinguish evi-
dence of true absence of the target species from merely insufficient
effort to detect it (Croft et al., 2019).

While these aspects strongly limit the use of citizen science
data in developing SDMs, we believe that there is a huge amount
of valuable information available in citizen science datasets that de-
serve much attention and critical rethinking. Recently, researchers
successfully explored the benefits of using citizen science data in
combination with standardized data collected by professional field
workers to estimate species distribution and abundance (Johnston
et al., 2018; Kelling et al., 2020; Roy-Dufresne et al., 2019; Tye
et al., 2016). While these studies provided useful insights, in this

research we considered only citizen science data to develop SDMs,
and our results showed that citizen science data can be correctly
used to develop SDMs with high predictive accuracy. Specifically,
accounting for surrogates of sampling effort led to an overall in-
crease in predictive accuracy as shown by the higher values of val-
idation statistics of the SDMs carried out with observer-oriented
pseudo-absences than those of SDMs carried out considering ran-
dom pseudo-absences. Thus, our results proved the usefulness of
large citizen science datasets to estimate species distributions not
only considering target species locations but also those of other spe-
cies collected by the same observers of the target species as pseu-
do-absences, accounting for the unequal sampling effort that could
occur in site selection, in agreement with previous studies suggest-
ing that records of other species may provide a suitable proxy to
estimate survey effort (Phillips et al., 2009; Croft et al., 2019; van
Strien et al., 2013). Thus, we believe that our “observer-oriented”
approach represents a new methodological way to develop more
robust and accurate SDMs than those developed using random
pseudo-absences, potentially useful and widely applicable to many
ecological contexts.

4.2 | Random versus observer-oriented pseudo-
absences in SDMs

Recently, Loy et al. (2019) revised the checklist of Italian mam-
mals, with data over 120 species and their relative distributions,
updated following the most recent scientific literature (cf. also
Amori et al., 2008; Boitani et al., 2003). The checklist built by Loy
et al. (2019) was totally based on an expert-based approach (without
considering data uploaded on iNaturalist) involving 21 top experts
on Italian mammals. Considering this recent assessment, we gener-
ally found that the output maps of the observer-oriented approach
showed better approximations of distributions of all the selected
mammalian species in this study, compared to those derived using
random pseudo-absences.

Specifically, the random models underestimated the actual dis-
tributions for many of our target species. For instance, widely dis-
tributed species, for example, the red deer Cervus elaphus, the fallow
deer, the European brown hare Lepus europaeus, and the gray wolf
Canis lupus showed a wider suitability in Northern regions, whereas
being poorly represented in Southern ones, where citizen science
records are few, suggesting that our observer-oriented “pseudo-ab-
sences” closely correspond to real species’ absences. Similarly, a
gradient of decreasing suitability from Northern to Central and
Southern regions in the resulting maps of SDMs carried out using
random pseudo-absences can be observed for the Eastern cotton-
tail Sylvilagus floridanus, the Eurasian red squirrel, and the European
roe deer. The alien Eastern gray squirrel shows invasive popula-
tions mainly in North-Western Italy, but several nuclei also occur in
North-Eastern and Central Italy (Loy et al., 2019); the output maps
of SDMs carried out using random pseudo-absences highlighted

only the main invaded areas, whereas the observer-oriented clearly
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reflected also the occurrences of small and isolated populations (Di
Febbraro et al., 2019).

On the other side, output maps carried out with the two differ-
ent approaches provided reliable outputs for large and diurnal herbi-
vores living in limited areas (e.g., the only Alpine area in Italy), such as
the Northern chamois and the Alpine ibex Capra ibex (the latter was
not included in this study). These species have precise habitat re-
quirements and frequently attract citizen scientists and natural pho-
tographers (Brambilla et al., 2020; Mori, et al., 2018), suggesting that
their true distribution would be well-represented in citizen science
platforms, i.e., species’ absences mainly correspond to where they
have not been recorded and thus both random and “observer-ori-
ented” pseudo-absences mainly correspond to absences. Similarly,
also the distribution of the European hedgehog Erinaceus europaeus
is well-represented by both models. This small mammal is one of the
most widespread mammal species in Italy (Loy et al., 2019), living in
a number of habitat types ranging from woodland to urban areas
(Amori et al., 2008).

Common mesomammals, for example, the red fox, the
European badger Meles meles, the coypu, and the crested por-
cupine Hystrix cristata, frequently recorded as road-kills, as well
as the wild boar, consistently showed a medium-high suitability
throughout Italy, but at a lower level with respect to observer-ori-
ented models. This could be related to the fact that all those spe-
cies are very widespread in Italy (Loy et al., 2019), and they could
also be under-recorded by citizen scientists. Biological character-
istics of these species (e.g., nocturnal habits, elusiveness, partic-
ular habitat requirements, and scattered distribution) may lower
their detectability, or citizen scientist may consider them as com-

mon and poorly important to be recorded.

5 | CONCLUSIONS

Citizen science data could play a fundamental role in addressing
challenges to biodiversity conservation, especially at broad scale.
In many cases, they represent the only source of information but
they are also likely to contain large biases (e.g., in sampling ef-
fort and spatial coverage; Dobson et al., 2020). In this study, we
showed how accounting for such biases could improve model
performance, providing accurate estimates of species distribu-
tion. Moreover, while the preparation and analysis of opportunis-
tic data frequently requires a higher amount of money and effort
than for more structured datasets (Cagnacci et al., 2012; Dobson
et al., 2020), we argue that, thanks to the already existing R pack-
ages (i.e., “RINAT,””SPOCC"), it is relatively easy and straightfor-
ward to collect species occurrences from open-access citizen
science platforms such as iNaturalist. Furthermore, the crowd-
source identification method on iNaturalist is also open to all
worldwide experts and in the case of easily recognizable taxa does
not require correction by the observer, thus making it suitable for
revision at any time. This is relevant especially in light of ongoing

national and continental atlas projects, for example, the Atlas of
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Italian Mammals (“Atlante dei Mammiferi Italiani”) and the second
Atlas of European Mammals (EMMA Il), respectively. This holds
true also in light of the effect of climate and land use change on
future species distribution (Della Rocca et al., 2019; Della Rocca &
Milanesi, 2020; Milanesi et al., 2017; Mori et al., 2018).
Nevertheless, while providing more accurate estimates than
standard SDMs (involving random pseudo-absences), we stress
that our approach represents a starting point on the develop-
ment of SDMs totally based on presence-only citizen science data.
Unfortunately, due to the lack of data derived by structured surveys
for our target species, we could not compare our results to those of
comprehensive Atlas projects such as done in Johnston et al. (2018).
Thus, we suggest that further studies should explore the inclusion
of other parameters (e.g., observer’ skills, observation process) or
even attempt to estimate abundance/density of the target species
with citizen science data. In the meanwhile, promoting the adoption
of standardized sampling schemes and spatial coverage will inevita-
bly increase data quality and thus lead to even more robust results.
Thus, we stress that a more structured approach to the collection of
Citizen Science data is needed and should be encouraged wherever
possible while making better use of existing presence-only data as

an interim measure.
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