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1  | INTRODUC TION

Monitoring biodiversity is fundamental for conservation and sus-
tainable use of natural resources but governmental, non-govern-
mental organizations (NGOs), and scientific agencies often lack 

financial resources to support long-term biodiversity assessment 
by professional scientists and volunteers (Bland et al., 2015; Kelling 
et al., 2018). Collection of field-data is often very expensive and re-
quires a high economic and time effort, even to get a low amount 
of information, especially under the ongoing global economic crisis 
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Abstract
Citizen science platforms are increasingly growing, and, storing a huge amount of 
data on species locations, they provide researchers with essential information to de-
velop sound strategies for species conservation. However, the lack of information on 
surveyed sites (i.e., where the observers did not record the target species) and sam-
pling effort (e.g., the number of surveys at a given site, by how many observers, and 
for how much time) strongly limit the use of citizen science data. Thus, we examined 
the advantage of using an observer-oriented approach (i.e., considering occurrences 
of species other than the target species collected by the observers of the target 
species as pseudo-absences and additional predictors relative to the total number 
of observations, observers, and days in which locations were collected in a given 
sampling unit, as proxies of sampling effort) to develop species distribution models. 
Specifically, we considered 15 mammal species occurring in Italy and compared the 
predictive accuracy of the ensemble predictions of nine species distribution mod-
els carried out considering random pseudo-absences versus observer-oriented ap-
proach. Through cross-validations, we found that the observer-oriented approach 
improved species distribution models, providing a higher predictive accuracy than 
random pseudo-absences. Our results showed that species distribution modeling 
developed using pseudo-absences derived citizen science data outperform those 
carried out using random pseudo-absences and thus improve the capacity of spe-
cies distribution models to accurately predict the geographic range of species when 
deriving robust surrogate of sampling effort.
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which led scientists to adapt to a period of limited availability of re-
search funds (Cagnacci et al., 2012).

In this context, citizen science represents a powerful cost-effec-
tive strategy to collect baseline scientific data by engaging common, 
that is, non-professional, people, leveraging the growing public “en-
vironmental awareness” and the increase worldwide in wildlife en-
thusiasts (e.g., McCafferty, 2016; Silvertown et al., 2011; Willemen 
et  al.,  2015). Citizen science is becoming more and more popular 
as well as available online; actually, many organizations developed 
citizen science projects recruiting the wider public to provide large 
quantities of unstructured biodiversity data across large spatial and 
temporal extents (Amano et al., 2016; Danielsen et al., 2014; Mori & 
Menchetti, 2014; Pimm et al., 2014; Sullivan et al., 2014). Over 500 
citizen science projects have been detected worldwide, through a 
systematic online research in 2017 (Pocock et al., 2017), promoted 
also by the widespread use of smartphones and tablets (Liebenberg 
et al., 2017; Wang et al., 2014) which have greatly simplified the pro-
cedure to upload records on online platforms (Pocock et al., 2017). 
Monitoring biodiversity through citizen science projects is having a 
great influence in ecology (Dickinson et al., 2010) and a big variety 
of platforms are running nowadays (e.g., iNaturalist.org, essentially 
about collating casual observations, and eBird.org, strongly encour-
aging complete lists with associated effort while also allowing for 
less structured recordings). Citizen science data often result in a 
high number of occurrences recorded over large areas (i.e., countries 
or continents), and time spans and at relatively low costs (Hobson 
et al., 2017; Mori, et al., 2017; Paul et al., 2014; Willemen et al., 2015). 
Opportunistic citizen data have been shown to provide researchers 
with well-approximated distribution ranges (or with further data 
on existing occurrences) and predictions of habitat use, necessary 
to address functional conservation efforts (e.g., Bruce et al., 2014; 
Tye et al., 2016). Moreover, citizen science data on online platforms 
has allowed researchers to perform studies on biogeography, alien 
species range expansion, species natural history, and interspecific 
interactions (Chandler et  al.,  2017; Menchetti et  al.,  2019; Mori 
et al., 2018; Mori & Menchetti, 2014; Sullivan et al., 2014; Vendetti 
et al., 2018). Therefore, citizen science is playing an important role 
in improving conservation biology, including also natural resource 
management and environmental preservation (Devictor et al., 2010; 
McKinley et al., 2017; Van der Wal et al., 2015).

Citizen science has the potential to remarkably increase our 
biodiversity knowledge (Pimm et al., 2014), but it can be challeng-
ing to identify citizen data that effectively monitor biodiversity 
(Kelling et  al.,  2018). Specifically, the use of citizen science data 
for biodiversity assessment is limited by several concerning fac-
tors including the lack of absence data and information on sam-
pling effort (Crall et  al., 2011, 2015; Dickinson et  al., 2010; Kamp 
et al., 2019; Kelling et al., 2018), leading to limited interpretations 
(Ottinger, 2010; Conrad & Hilchey, 2011). These are serious issues 
which may strongly influence the accuracy of species distribution 
models (SDMs). SDMs combine species presence/absence loca-
tions with a set of environmental covariates (e.g., climatic variables) 
to identify factors related to species occurrence and thus predict 

species distribution to unsampled sites across a landscape (Elith & 
Leathwick, 2009). Ideally, species locations should be randomly dis-
tributed through the environmental space and sampling effort equal 
across the landscape, which is rarely the case citizen science data 
(Yackulic et al., 2013). When developing SDMs, the lack of absence 
data, and/or information on sampling effort can both inflate the spe-
cies' presence in localized areas and cause some environmental hab-
itats to be overlooked, increasing the likelihood of type I errors (false 
positives) and thus generating misleading predictions (Roy-Dufresne 
et  al.,  2019). To overcome these issues, presence-only SDMs use 
pseudo-absences instead of real absences to predict species dis-
tribution but there is still no consensus on the best way to sample 
these pseudo-absences (Barbet-Massin et al., 2012).

Surprisingly, most of the studies using citizen science data to 
develop SDMs do not attempt to provide reliable pseudo-absences 
data but rather investigate data quality developing protocols tested 
on citizen science (Delaney et al., 2008; Genet & Sargent, 2003), as 
well as smart filters to flag doubtful data uploaded on online data-
bases, often using information contained within the citizen data, for 
example, observation date, ID of the observer (Crall et  al.,  2015). 
However, while data from online portals are not without limitations, 
data stored in citizen science projects that collect sufficient contex-
tual information describing the observation process can be used to 
generate increasingly accurate information about the distribution 
and abundance of organisms through SDMs (Elith & Leathwick, 
2009; Kelling et al., 2018).

Thus, in this study, we tested a new approach, namely “observ-
er-oriented” approach, to improve SDMs, identifying reliable pseu-
do-absences as well as accounting for (pseudo-) sampling effort 
using citizen science data collected by the same observers of the tar-
get species. Basically, instead of using random pseudo-absences, our 
approach consists of using records of species of other than the tar-
get species collected by the observers of the target species as pseu-
do-absences and adding proxies of sampling effort (i.e., the number 
of total observations, observers, and days in which locations were 
collected in a given sampling unit) as additional predictors in SDMs. 
We assumed that (a) a given observer of a given species would col-
lect locations of such species when they will find it in the field and 
that (b) essential information available in online citizen science re-
positories could be used to derive reliable proxies of sampling effort.

Thus, our aim is to test if SDMs based on “observer-oriented” 
approach outperform (i.e., result in higher predictive accuracy than) 
those develop using random pseudo-absences.

2  | MATERIAL S AND METHODS

2.1 | Presences and observer-oriented pseudo-
absences

We considered presence locations of 15 terrestrial mammal species 
(Table 1) collected by citizen scientists during the period 2010–2018 
in Italy, extracted from the iNaturalist project “Mammiferi d’Italia” 
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(www.inatu​ralist.org/proje​cts/mammi​feri-d-italia) which gathers all 
the observations of Italian mammals uploaded in the platform and 
where species identification is supervised by the authors EM and 
MM. We considered only species locations for which geographic 
coordinates were provided. The citizen science website iNaturalist 
is an open-access and open-source platform aimed to record biodi-
versity worldwide. This platform allows downloading all the occur-
rences using specific queries (i.e., taxon, place, user/observer, date, 
etc.).

To select pseudo-absences of each considered species, we listed 
their relative observers and then extracted, from iNaturalist online 
platform, all the locations of all the species (i.e., including both plants 
and animals) collected by these observers. Similar to presence lo-
cations of our 15 target species, we considered only data collected 
during the period 2010–2018 in Italy for which geographic coordi-
nates were provided.

2.2 | Study area

Our study area corresponds to the whole Italian territory (7°49′–
13°91′ E; 45°–42° 39′ N), which is about 300,000 km2, ranging from 
0 to 4,810 m a. s. l. with a climatic gradient from temperate to con-
tinental, to alpine, resulting in high habitat diversity. The ongoing 
human population abandonment in the hilly and mountainous parts 
of our study area started already 50–60 years ago, lead to a dramatic 
decrease of agriculture in favor of shrub-lands, woods, and forests. 
Forests, composed by broadleaf or mixed woods and, to a lesser ex-
tent, by coniferous forests are mainly located on the Alps and the 
Apennines. Here, grasslands are mainly used only for livestock graz-
ing. Thus, the environment results in a patchy landscape pattern of 

forests and open-areas across large zones where most of the human 
population live in the main valleys, big cities along the coasts and 
plains.

2.3 | Predictor variables

We initially collected 43 predictor variables contiguously available 
for the entire study area (Table S1). We considered three topo-
graphic variables (altitude, slope, and landscape roughness), derived 
from a digital elevation model of Italy with a spatial resolution of 
20  m (www.sinan​et.ispra​mbien​te.it), 19 bioclimatic predictors col-
lected from the WorldClim dataset (www.world​clim.org/version2 at 
a spatial resolution of 30 arc-second, ≈1 km), 11 land cover variables 
(percentage of coniferous, deciduous, and mixed forests, distance to 
forests, croplands, grasslands, shrub-lands, water courses, distance 
to water courses, rocky areas, and habitat diversity) derived from 
CORINE Land Cover vector data (European Environment Agency 
2012; www.sinan​et.ispra​mbien​te.it). Moreover, we also included four 
forest structure variables namely density of trees (at a spatial reso-
lution of 1  km; www.elisc​holar.libra​ry.yale.edu/yale_fes_data/1/; 
www.figsh​are.com/artic​les/Global_map_of_tree_densi​ty/3179986), 
wood biomass (1 km resolution; www.wagen​ingen​ur.nl/grsbi​omass), 
canopy height (at a spatial resolution of 1 km; www.lands​cape.jpl.
nasa.gov/), and canopy height roughness (as a measure of variation 
in canopy height, a proxy for the heterogeneity of the vegetation; 
Froidevaux et al., 2016).

Finally, we also considered six anthropogenic features: the per-
centage and distance to human settlements (i.e., urban areas and 
villages also derived from the CORINE Land Cover 2012), density of 
and distance to roads (OpenStreetMap; www.opens​treet​map.org), 

Species Occurrences Observers
Observer-oriented 
pseudo-absences

Capreolus capreolus 976 232 22,116

Vulpes vulpes 731 245 22,299

Myocastor coypus 673 280 21,892

Rupicapra rupicapra 610 141 15,889

Erinaceus europaeusa  577 247 20,381

Sciurus vulgaris 536 233 24,290

Sus scrofa 475 151 18,557

Meles meles 439 154 20,346

Lepus europaeus 399 159 20,207

Sylvilagus floridanus 301 108 15,862

Canis lupus 284 73 12,374

Cervus elaphus 270 100 14,354

Hystrix cristata 193 88 14,795

Sciurus carolinensis 141 83 13,549

Dama dama 96 52 11,055

aWe considered only data collected between April and October to avoid false pseudo-absences 
due to species hibernation. 

TA B L E  1   Number of presence 
occurrences, their observers and resulting 
total pseudo-absences collected for 
the 15 species of terrestrial mammals 
considered in this study between 2010 
and 2018

http://www.inaturalist.org/projects/mammiferi-d-italia
http://www.sinanet.isprambiente.it
http://www.worldclim.org/version2
http://www.sinanet.isprambiente.it
http://www.elischolar.library.yale.edu/yale_fes_data/1/
http://www.figshare.com/articles/Global_map_of_tree_density/3179986
http://www.wageningenur.nl/grsbiomass
http://www.landscape.jpl.nasa.gov/
http://www.landscape.jpl.nasa.gov/
http://www.openstreetmap.org
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human population density (GEOSTAT 2011 1 × 1 km grid dataset – 
Eurostat – European Commission;

www.ec.europa.eu/euros​tat/web/gisco/​geoda​ta/refer​ence-
data/popul​ation​-distr​ibuti​on-demog​raphy; Table S1) and artificial 
night-time light brightness (NOAA, NPP VIIRS – NASA 2012 with 
a spatial resolution of 350 m; www.ngdc.noaa.gov/eog/viirs/​downl​
oad_dnb_compo​sites.html).

All predictor variables were resampled at a 1  ×  1  km grid cell 
size, and we calculated the Variance Inflation Factor (VIF; Zuur 
et  al.,  2010) to avoid that multicollinearity among predictors neg-
atively affected SDMs. Specifically, we used a stepwise variable 
selection procedure in which variables were removed till the high-
est VIF value was <3 (Zuur et al., 2010). Thus, we removed 17 pre-
dictors because of VIF > 3 (highly related to other predictors; Zuur 
et al., 2010; Table S1).

2.4 | Species distribution models

Similar to Milanesi et  al.  (2019), to develop SDMs avoiding biased 
estimation due to single model uncertainty (Thuiller et al., 2009), we 
calculated the weighted ensemble prediction (wEP, weighted by the 
true skills statistic, TSS; see below) averaging nine different SDMs 
namely (a) artificial neural networks (ANN; Ripley, 2007), (b) boosted 
regression trees (BRT; Friedman,  2001), (c) flexible discriminant 
analyses (FDA; Hastie et  al.,  1994), (d) generalized additive mod-
els (GAM; Hastie & Tibshirani, 1990), (e) generalized linear models 
(GLM; McCullagh & Nelder, 1989), (f) multivariate adaptive regres-
sion splines (MARS; Friedman,  1991), (g) maximum entropy algo-
rithm (MAXENT; Phillips et al., 2006), (h) MAXENT model using the 
glmnet package (Friedman et al., 2010) for regularized generalized 

linear models (MAXNET; Phillips et al., 2017) and (i) random forests 
(RF; Breiman,  2001). We developed SDMs through the packages 
BIOMOD2 (Thuiller et al., 2016) and MAXNET (Phillips et al., 2017) 
in R (R Core Team, 2013).

We found evidence of spatial autocorrelation among models’ re-
siduals through Moran's I correlogram, and thus, similarly to Pasinelli 
et al. (2016), we included x- and y-coordinates of species locations 
and their interaction in SDMs (then, models residuals where no lon-
ger spatially autocorrelated).

2.5 | Comparison of SDMs developed using random 
versus. observer-oriented pseudo-absences

We develop two sets of SDMs, alternatively using (a) totally random 
pseudo-absences (hereafter rpa-SDMs) and (b) observer-oriented 
approach (hereafter ooa-SDMs, i.e., considering other than target 
species locations collected by the observers of the target species 
as pseudo-absences and additional predictors related to the total 
number of observations, observers and days in which locations were 
collected in a given sampling unit, as proxies and to account for sam-
pling effort; Figure 1).

To avoid the possibility that different sample sizes of observ-
er-oriented pseudo-absences (Table  1) might bias our results, we 
randomly selected a total of 10,000 observer-oriented pseudo-ab-
sences for ooa-SDMs (equal to the number of random pseudo-ab-
sences in rpa-SDMs; we repeated this procedure 10 times and found 
consistent results of the further analyses).

By using a random subsample of 90% of the locations to cali-
brate the models and the remnant 10% to evaluate them (Thuiller 
et  al.,  2009), we carried out 10-fold cross-validations to test the 

F I G U R E  1   Conceptual framework showing the steps followed to develop species distribution models based on “observer-oriented” 
approach (first and second line) and random pseudo-absences (third line)

TARGET SPECIES 
LOCATIONS

OBSERVER-ORIENTED
PSEUDO-ABSENCES

( N=10,000)

RANDOM
PSEUDO-ABSENCES

(N=10,000)

PREDICTOR VARIABLES
(N=26) 

WEIGHTED ENSEMBLE 
PREDICTION

(N=9)

PROXIES OF SAMPLING EFFORT 
(N=3)

+

http://www.ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography
http://www.ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography
http://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
http://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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predictive accuracy of both rpa- (considering random pseudo-ab-
sences) and ooa(observer-oriented pseudo-absences)-SDMs. 
Specifically, we considered two widely used indices to evaluate 
model performance: (a) the area under the receiver operating charac-
teristic curve (AUC) and (b) the true skills statistic (TSS). AUC ranges 
between 0 and 1 (worse than a random model and best discriminat-
ing model, respectively) while TSS between −1 and 1 (higher values 
indicate a good predictive accuracy, while 0 indicates random pre-
diction). For a visual comparison, we rescaled the resulting maps de-
rived by rpa- and ooa-SDMs to range between 0 and 1. Values close 
to 0 indicate low suitability while close to 1 indicate high suitability.

3  | RESULTS

We considered a total of 6,701 occurrences of our target species 
(Figure 2), ranging from 96 for the fallow deer Dama dama to 976 for 
the roe deer Capreolus capreolus. All these locations were collected 
from a total of 957 observers, ranging from 52 for the fallow deer to 

280 for the coypu Myocastor coypus, who collected a total of 237,010 
non-target species occurrences (Figure  2), ranging from 11,055 
for the fallow deer to 24,290 for the red squirrel Sciurus vulgaris, 
which we initially considered as observer-oriented pseudo-absences 
(Table 1; Figs. S1–S15).

We generally found that ooa-SDMs had higher predictive accu-
racy than rpa-SDMs, considering both AUC and TSS. Specifically, 
the red fox Vulpes vulpes and the gray squirrel Sciurus carolinensis 
showed the highest and the lowest validation statistics, respectively, 
for both AUC and TSS (Table  2). AUC values of rpa-SDMs ranged 
from 0.639 to 0.906 while those of ooa-SDMs ranged from 0.767 
to 0.945, on the other side TSS values ranged from 0.271 to 0.776 
of rpa-SDMs, while those of ooa-SDMs ranged from 0.436 to 0.814 
(Table 2; Figure 3).

We recorded the highest difference between AUC and TSS 
values of rpa- and ooa-SDMs for the red fox and the wild boar Sus 
scrofa, respectively, while the lowest differences for both validation 
statistics were recorded for the Northern chamois Rupicapra rupi-
capra (Table 3).

F I G U R E  2   Study area (in gray). 
Target species locations in green, total 
observer-oriented pseudo-absences (i.e., 
considering other than target species 
locations collected by the observers of the 
target species) in black
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4  | DISCUSSION

In this study we compared SDMs developed using species occur-
rences derived from citizen science data but alternatively using 

random or observer-oriented occurrences as pseudo-absences. 
We found that the “observer-oriented” approach outperforms 
the widely used random pseudo-absences approach, and thus, we 
provided a better framework showing how opportunistic citizen 

Species

Random pseudo-absences Observer-oriented approach

AUC TSS AUC TSS

Capreolus capreolus 0.756 ± 0.026 0.433 ± 0.043 0.834 ± 0.026 0.546 ± 0.039

Vulpes vulpes 0.639 ± 0.048 0.271 ± 0.079 0.767 ± 0.022 0.436 ± 0.044

Myocastor coypus 0.796 ± 0.032 0.494 ± 0.063 0.858 ± 0.024 0.568 ± 0.052

Rupicapra rupicapra 0.905 ± 0.026 0.691 ± 0.066 0.914 ± 0.017 0.693 ± 0.045

Erinaceus europaeus 0.784 ± 0.027 0.504 ± 0.047 0.852 ± 0.026 0.572 ± 0.051

Sciurus vulgaris 0.705 ± 0.054 0.351 ± 0.075 0.825 ± 0.019 0.513 ± 0.031

Sus scrofa 0.697 ± 0.021 0.348 ± 0.031 0.824 ± 0.024 0.532 ± 0.053

Meles meles 0.685 ± 0.053 0.344 ± 0.083 0.799 ± 0.031 0.477 ± 0.048

Lepus europaeus 0.751 ± 0.033 0.424 ± 0.053 0.822 ± 0.041 0.541 ± 0.076

Sylvilagus floridanus 0.808 ± 0.043 0.545 ± 0.073 0.874 ± 0.022 0.616 ± 0.046

Canis lupus 0.747 ± 0.068 0.464 ± 0.104 0.835 ± 0.032 0.582 ± 0.079

Cervus elaphus 0.831 ± 0.053 0.589 ± 0.093 0.882 ± 0.049 0.676 ± 0.096

Hystrix cristata 0.724 ± 0.067 0.439 ± 0.091 0.774 ± 0.059 0.446 ± 0.071

Sciurus carolinensis 0.906 ± 0.021 0.776 ± 0.048 0.945 ± 0.028 0.814 ± 0.083

Dama dama 0.844 ± 0.077 0.621 ± 0.138 0.856 ± 0.074 0.691 ± 0.151

TA B L E  2   Ten-fold cross-validations of 
the weighted ensemble prediction (wEP) 
of nine species distribution models carried 
out on 15 species of terrestrial mammals. 
Area Under the Curve (AUC) ranges 
between 0 and 1 (worse than random and 
best discriminating model, respectively) 
while True Skill Statistic (TSS) between 
−1 and 1 (high values indicate good 
predictive accuracy, 0 indicates random 
prediction). Average values ± standard 
deviations alternatively using 10,000 
random or observer-oriented pseudo-
absences are shown

F I G U R E  3   Example of resulting 
weighted ensemble predictions for the 
European brown hare (first line) and the 
red deer (second line) derived from nine 
different species distribution models 
carried out alternatively using random 
pseudo-absences (left) and “observer-
oriented” approach (right). Blue-yellow 
scale indicates low-high suitability
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science data can be used to develop more accurate species distri-
bution models.

4.1 | Citizen science data and species 
distribution models

The use of citizen science data has been initially advocated to as-
sess species distribution at large scale, where standardized sampling 
is often impracticable (Mori et  al.,  2019; Van Strien et  al.,  2013). 
However, this method has been recently criticized due to uncertain-
ties associated with underlying sampling processes (Mair & Ruete, 
2016). While only citizen science projects can gather sufficient 
quantities of species locations, these data are inherently noisy and 
heterogeneous (Kelling et al., 2015). Moreover, citizen science data-
sets available on online platforms do not provide information on all 
sampling sites (even those were target species where absent) or on 
sampling effort, both of which are fundamental to distinguish evi-
dence of true absence of the target species from merely insufficient 
effort to detect it (Croft et al., 2019).

While these aspects strongly limit the use of citizen science 
data in developing SDMs, we believe that there is a huge amount 
of valuable information available in citizen science datasets that de-
serve much attention and critical rethinking. Recently, researchers 
successfully explored the benefits of using citizen science data in 
combination with standardized data collected by professional field 
workers to estimate species distribution and abundance (Johnston 
et  al.,  2018; Kelling et  al.,  2020; Roy-Dufresne et  al.,  2019; Tye 
et  al.,  2016). While these studies provided useful insights, in this 

research we considered only citizen science data to develop SDMs, 
and our results showed that citizen science data can be correctly 
used to develop SDMs with high predictive accuracy. Specifically, 
accounting for surrogates of sampling effort led to an overall in-
crease in predictive accuracy as shown by the higher values of val-
idation statistics of the SDMs carried out with observer-oriented 
pseudo-absences than those of SDMs carried out considering ran-
dom pseudo-absences. Thus, our results proved the usefulness of 
large citizen science datasets to estimate species distributions not 
only considering target species locations but also those of other spe-
cies collected by the same observers of the target species as pseu-
do-absences, accounting for the unequal sampling effort that could 
occur in site selection, in agreement with previous studies suggest-
ing that records of other species may provide a suitable proxy to 
estimate survey effort (Phillips et al., 2009; Croft et al., 2019; van 
Strien et  al.,  2013). Thus, we believe that our “observer-oriented” 
approach represents a new methodological way to develop more 
robust and accurate SDMs than those developed using random 
pseudo-absences, potentially useful and widely applicable to many 
ecological contexts.

4.2 | Random versus observer-oriented pseudo-
absences in SDMs

Recently, Loy et  al.  (2019) revised the checklist of Italian mam-
mals, with data over 120 species and their relative distributions, 
updated following the most recent scientific literature (cf. also 
Amori et al., 2008; Boitani et al., 2003). The checklist built by Loy 
et al. (2019) was totally based on an expert-based approach (without 
considering data uploaded on iNaturalist) involving 21 top experts 
on Italian mammals. Considering this recent assessment, we gener-
ally found that the output maps of the observer-oriented approach 
showed better approximations of distributions of all the selected 
mammalian species in this study, compared to those derived using 
random pseudo-absences.

Specifically, the random models underestimated the actual dis-
tributions for many of our target species. For instance, widely dis-
tributed species, for example, the red deer Cervus elaphus, the fallow 
deer, the European brown hare Lepus europaeus, and the gray wolf 
Canis lupus showed a wider suitability in Northern regions, whereas 
being poorly represented in Southern ones, where citizen science 
records are few, suggesting that our observer-oriented “pseudo-ab-
sences” closely correspond to real species’ absences. Similarly, a 
gradient of decreasing suitability from Northern to Central and 
Southern regions in the resulting maps of SDMs carried out using 
random pseudo-absences can be observed for the Eastern cotton-
tail Sylvilagus floridanus, the Eurasian red squirrel, and the European 
roe deer. The alien Eastern gray squirrel shows invasive popula-
tions mainly in North-Western Italy, but several nuclei also occur in 
North-Eastern and Central Italy (Loy et al., 2019); the output maps 
of SDMs carried out using random pseudo-absences highlighted 
only the main invaded areas, whereas the observer-oriented clearly 

TA B L E  3   Difference between average values of Area Under the 
Curve (AUC) and True Skill Statistic (TSS) estimated by weighted 
ensemble prediction of nine species distribution models carried out 
on 15 species of terrestrial mammals alternatively using random 
pseudo-absences and observer-oriented approach

Species Δ AUC
Δ 
TSS

Capreolus capreolus 0.078 0.113

Vulpes vulpes 0.128 0.165

Myocastor coypus 0.062 0.074

Rupicapra rupicapra 0.009 0.002

Erinaceus europaeus 0.068 0.068

Sciurus vulgaris 0.12 0.162

Sus scrofa 0.127 0.184

Meles meles 0.114 0.133

Lepus europaeus 0.071 0.117

Sylvilagus floridanus 0.066 0.071

Canis lupus 0.088 0.118

Cervus elaphus 0.051 0.087

Hystrix cristata 0.05 0.007

Sciurus carolinensis 0.039 0.038

Dama dama 0.012 0.07
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reflected also the occurrences of small and isolated populations (Di 
Febbraro et al., 2019).

On the other side, output maps carried out with the two differ-
ent approaches provided reliable outputs for large and diurnal herbi-
vores living in limited areas (e.g., the only Alpine area in Italy), such as 
the Northern chamois and the Alpine ibex Capra ibex (the latter was 
not included in this study). These species have precise habitat re-
quirements and frequently attract citizen scientists and natural pho-
tographers (Brambilla et al., 2020; Mori, et al., 2018), suggesting that 
their true distribution would be well-represented in citizen science 
platforms, i.e., species’ absences mainly correspond to where they 
have not been recorded and thus both random and “observer-ori-
ented” pseudo-absences mainly correspond to absences. Similarly, 
also the distribution of the European hedgehog Erinaceus europaeus 
is well-represented by both models. This small mammal is one of the 
most widespread mammal species in Italy (Loy et al., 2019), living in 
a number of habitat types ranging from woodland to urban areas 
(Amori et al., 2008).

Common mesomammals, for example, the red fox, the 
European badger Meles meles, the coypu, and the crested por-
cupine Hystrix cristata, frequently recorded as road-kills, as well 
as the wild boar, consistently showed a medium-high suitability 
throughout Italy, but at a lower level with respect to observer-ori-
ented models. This could be related to the fact that all those spe-
cies are very widespread in Italy (Loy et al., 2019), and they could 
also be under-recorded by citizen scientists. Biological character-
istics of these species (e.g., nocturnal habits, elusiveness, partic-
ular habitat requirements, and scattered distribution) may lower 
their detectability, or citizen scientist may consider them as com-
mon and poorly important to be recorded.

5  | CONCLUSIONS

Citizen science data could play a fundamental role in addressing 
challenges to biodiversity conservation, especially at broad scale. 
In many cases, they represent the only source of information but 
they are also likely to contain large biases (e.g., in sampling ef-
fort and spatial coverage; Dobson et al., 2020). In this study, we 
showed how accounting for such biases could improve model 
performance, providing accurate estimates of species distribu-
tion. Moreover, while the preparation and analysis of opportunis-
tic data frequently requires a higher amount of money and effort 
than for more structured datasets (Cagnacci et al., 2012; Dobson 
et al., 2020), we argue that, thanks to the already existing R pack-
ages (i.e., “RINAT,””SPOCC”), it is relatively easy and straightfor-
ward to collect species occurrences from open-access citizen 
science platforms such as iNaturalist. Furthermore, the crowd-
source identification method on iNaturalist is also open to all 
worldwide experts and in the case of easily recognizable taxa does 
not require correction by the observer, thus making it suitable for 
revision at any time. This is relevant especially in light of ongoing 
national and continental atlas projects, for example, the Atlas of 

Italian Mammals (“Atlante dei Mammiferi Italiani”) and the second 
Atlas of European Mammals (EMMA II), respectively. This holds 
true also in light of the effect of climate and land use change on 
future species distribution (Della Rocca et al., 2019; Della Rocca & 
Milanesi, 2020; Milanesi et al., 2017; Mori et al., 2018).

Nevertheless, while providing more accurate estimates than 
standard SDMs (involving random pseudo-absences), we stress 
that our approach represents a starting point on the develop-
ment of SDMs totally based on presence-only citizen science data. 
Unfortunately, due to the lack of data derived by structured surveys 
for our target species, we could not compare our results to those of 
comprehensive Atlas projects such as done in Johnston et al. (2018). 
Thus, we suggest that further studies should explore the inclusion 
of other parameters (e.g., observer’ skills, observation process) or 
even attempt to estimate abundance/density of the target species 
with citizen science data. In the meanwhile, promoting the adoption 
of standardized sampling schemes and spatial coverage will inevita-
bly increase data quality and thus lead to even more robust results. 
Thus, we stress that a more structured approach to the collection of 
Citizen Science data is needed and should be encouraged wherever 
possible while making better use of existing presence-only data as 
an interim measure.
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