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Abstract
Aim: Citizen science data are increasingly used for modelling species distributions 
because they offer broad spatiotemporal coverage of local observations. However, 
such data are often collected without experimental design or set survey methods, 
raising the risk that bias and noise will compromise modelled predictions. We tested 
the ability of species distribution models (SDMs) built from these low‐structure citi‐
zen science data to match the quality of SDMs from systematically collected data and 
tested whether stringent data filtering improved predictions.
Location: Northeastern USA.
Methods: We evaluated models built from a rapidly growing dataset of avian oc‐
currences reported by birders—eBird—against models built from four independent, 
systematically collected datasets. We developed SDMs for 96 species using both 
data sources and compared their predictive abilities. We also tested whether culling 
eBird data by applying stringent data filters on survey effort or observer expertise 
improved predictions.
Results: We found that SDMs built from low‐structure citizen science data matched 
or exceeded performance of SDMs from systematically collected datasets for 12%–
31% of species (x̄ = 22%), depending on the dataset. At least one culling option pro‐
duced equivalent or better performance for 40%–70% of species (x̄  = 49%). Data 
culling by restricting survey effort improved predictions more than restricting by ob‐
server expertise. The optimal effort restriction differed by dataset, and for three of 
the datasets was further informed by species traits.
Main conclusions: Species distribution models developed using low‐structure citizen 
science data sometimes performed as well as those from systematic data. Culling 
generally improved models, but results were heterogeneous, prohibiting clear rec‐
ommendations for how to cull. Our results indicate that the growing availability of 
citizen science data holds potential for creating high‐quality spatial predictions, but 
that time should be invested in determining how best to cull datasets and that one‐
size‐fits‐all solutions beyond basic outlier filtering may be hard to find.
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1  | INTRODUC TION

Ecologists have growing options concerning where they source spa‐
tial data on species' occurrence and abundance. Systematically col‐
lected data are traditional ecological data products that use strict 
survey designs to ensure sufficient sample sizes and balanced spa‐
tial and temporal sampling (Guisan, Thuiller, & Zimmermann, 2017), 
while minimizing variation in the observation process. Citizen science 
data, by contrast, are a rapidly growing data source for ecological re‐
search as user‐friendly web‐based platforms for data collection pro‐
liferate (Devictor, Whittaker, & Beltrame, 2010; Lowman, D’Avanzo, 
& Brewer, 2009; Sullivan et al., 2014). Although some citizen science 
efforts are highly structured with strict protocols (e.g. Robbins, 
Bystrak, & Geissler, 1986), much of the recent growth involves plat‐
forms that allow untrained contributors to choose when, where and 
how they collect data (e.g. Hochachka et al., 2012; iNaturalist.org, 
2019). The resulting data, therefore, often suffer from limitations, 
including spatial biases, imprecise temporal and spatial resolutions, 
and under‐ or over‐reporting of species (Dickinson, Zuckerberg, 
& Bonter, 2010; Fitzpatrick, Preisser, Ellison, & Elkinton, 2009; 
Steger, Butt, & Hooten, 2017; Szabo, Vesk, Baxter, & Possingham, 
2010; Tulloch, Mustin, Possingham, Szabo, & Wilson, 2013; Tulloch 
& Szabo, 2012; Tye, McCleery, Fletcher, Greene, & Butryn, 2017). 
However, because citizen scientists provide such high data volume, 
determining how best to use these data for ecological research will 
likely improve biogeographical insights, conservation decisions and 
conservation outcomes (Dickinson et al., 2010; La Sorte et al., 2018).

Species distribution models (SDMs) are a popular tool for using 
georeferenced species occurrences in relation to environmental 
conditions to predict occurrence across regions (Franklin, 2010). 
Accurate predictions of species distributions are affected by attri‐
butes of the underlying occurrence data used to build SDMs. Ideally, 
SDMs are built from systematically collected observational datasets, 
but as these data are often not available for most species and/or 
study regions, SDMs are commonly built with presence‐only data 
derived from biological specimen records (Peterson et al., 2011).

Citizen science data have great potential as a cost‐efficient al‐
ternative to systematic data that can provide access to more species 
and broader spatial coverage (Pimm et al., 2014). However, biases 
and noise potentially limit ability of citizen science data to be used 
reliably for mapped output and at scales relevant to conserva‐
tion (Kremen et al., 2008; Rondinini, Wilson, Boitani, Grantham, & 
Possingham, 2006). A key advance in the use of citizen science data 
would be the ability to reliably map species distributions that meet 
or exceed what can be accomplished from systematic surveys.

Reducing bias and noise in citizen science datasets can be 
achieved by either filter‐based or statistical techniques (Bird et al., 

2014; Isaac, Strien, August, Zeeuw, & Roy, 2014). Filtering removes 
problematic observations, such as outliers, or those contribut‐
ing to sampling or spatial bias (Fink et al., 2010; Bonter & Cooper, 
2012; Butt, Slade, Thompson, Malhi, & Riutta, 2013; Boria, Olson, 
Goodman, & Anderson, 2014; Robinson et al., 2018; Tye et al., 2017). 
Statistical techniques fit models that address sampling bias and ob‐
servation heterogeneity. For example, occupancy modelling has 
been successfully used to improve SDMs by correcting for imperfect 
detection (Higa et al., 2015; Kéry, Gardner, & Monnerat, 2010; van 
Strien, van Swaay, & Termaat, 2013).

Data culling, whereby stringent data filters are applied to retain 
only the highest quality data, is one option for improving models de‐
rived from citizen science data, but the trade‐offs between reduced 
bias and loss of precision are poorly known. In one study, Kamp, 
Oppel, Heldbjerg, Nyegaard, and Donald (2016) found that culling 
to use only the highest quality data to estimate population trends 
did not overcome the effects of data loss. In comparison, Robinson, 
Ruiz‐Gutierrez, and Fink (2018) successfully used spatial data culling 
to improve SDMs for a rare species.

Because species vary widely in their prevalence, aggregation 
patterns and the ease with which they can be identified, citizen 
science data quality may vary considerably (Dickinson et al., 2010; 
Fitzpatrick et al., 2009; Kamp et al., 2016), such that using and cull‐
ing citizen science data may be more appropriate for some species 
than others. Taxa with smaller body sizes or lower densities often 
result in fewer detections in citizen science databases relative to 
benchmark surveys (Fitzpatrick et al., 2009; Kamp et al., 2016; 
Steger et al., 2017; Ward, 2014). Uncommon species may be under‐
reported or, conversely, over‐reported when rarity increases inter‐
est (Farmer, Leonard, & Horn, 2012; Swanson, Kosmala, Lintott, 
& Packer, 2016). Other species may be under‐reported in citizen 
science datasets simply because they are challenging to identify, 
whether requiring knowledge of vocalizations or lacking distin‐
guishing features (Crall et al., 2011; Dickinson et al., 2010; Ratnieks 
et al., 2016; Shea, Peterson, Wisniewski, & Johnson, 2011; Swanson 
et al., 2016). Such species‐specific traits which result in differen‐
tial representation in citizen science databases may be indicative 
of whether species are best studied using systematic data (where 
such issues are supposedly minimized), or whether citizen science 
datasets can substitute.

One of the largest and fastest growing ecological citizen sci‐
ence datasets is eBird (Hochachka et al., 2012; Sullivan et al., 
2014). eBird provides an online portal for reporting bird obser‐
vations, with over 100 million sightings logged annually by hun‐
dreds of thousands of users. While the platform is flexible in how 
participants collect data, ancillary survey information is collected 
describing time, location, travelling distance, and whether all 
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avian species were reported. This survey information and the high 
density of observations in many areas make the dataset ideal for 
exploring whether SDMs derived from citizen science data can 
match those from systematic surveys, and whether data culling 
improves models.

Here, we challenge SDMs created from eBird data to predict occur‐
rences independently assessed from four different ‘benchmark’ sys‐
tematically collected datasets of species occurrence. Additionally, we 
investigate whether data culling of eBird based on survey effort or ob‐
server expertise—two major sources of potential bias in citizen science 
datasets (Kelling, Fink, et al., 2015)—improve predictions. Specifically, 
we ask: (a) Can low‐structure citizen science data produce model pre‐
dictions that match the quality of those from systematically collected 
data? (b) Does selective data culling improve model predictions? and (c) 
Do species traits explain variation in the accuracy of predictive models 
in ways that could guide which culling decisions to make?

2  | METHODS

2.1 | Study area

We developed models for a 43,000  km2 region in the northeast‐
ern United States (Figure 1). Because most of our systematic data 
came from studies in the state of Connecticut, we used eBird data 
from Connecticut and surrounding states similar in climate, topogra‐
phy and habitat classes. This included Massachusetts to the north, 
Rhode Island to the east and the adjacent portion of New York west 
to the Hudson River. The study area is dominated by deciduous for‐
est and developed land cover and contains some mixed conifer for‐
est as well as spruce–fir forest. It also includes extensive coastline 

and small amounts of shrublands, grasslands, croplands and fresh‐
water wetlands.

2.2 | eBird data

eBird records are submitted in checklist format listing the counts 
of each species encountered. Checklists include information on 
observation duration, distance travelled and other method‐related 
metadata. We obtained these data by directly downloading the 
eBird Basic Dataset (https​://ebird.org/scien​ce/downl​oad-ebird-
data-products) on 6/27/2017. We restricted the data to only in‐
clude (a) ‘complete’ checklists in which all birds observed were 
recorded and thus we inferred species absence when not reported 
on a checklist (Sullivan et al., 2014); (b) observations from 2010 
to 2016—a period that overlapped the years of three of the four 
benchmark datasets; (c) data from 4:15 a.m. to 12:00 p.m., when 
many bird species are considered most detectable; (d) seasonal 
dates corresponding to the respective benchmark datasets (Table 
S1); (e) surveys that covered less than 8.1 km (Fink et al., 2010) and 
(f) surveys that lasted up to 300 min to increase detection data for 
more uncommon species.

We created three types of eBird training datasets: ‘full’ datasets 
included all eBird data that matched the criteria described above, 
while ‘culled’ and ‘random’ datasets were reduced subsets. To ad‐
dress spatial sampling bias, all datasets were spatially thinned, so 
that no observation was within 1 km of another, using the R pack‐
age spThin v.0.1.0 (Aiello‐Lammens, Boria, Radosavljevic, Vilela, & 
Anderson, 2015). We used R versions 3.3.3 and 3.5.2 for our various 
analyses. Based on results of exploratory analyses, we chose a more 
conservative 1‐km thin over a 500‐m thin and retained data from the 

F I G U R E  1  Study area in the 
northeastern USA showing the extent 
of eBird citizen science training data by 
the black outline in map and inset. Points 
show the locations of observations from 
the four benchmark datasets

https://ebird.org/science/download-ebird-data-products
https://ebird.org/science/download-ebird-data-products
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full extent of the study area versus masking data to match the extent 
of benchmark datasets (see Spatial Thinning and Masking in Appendix 
S1 in Supporting Information for more details). These scales created 
spacing similar to that of the point‐counts in our benchmark datasets.

To create the culled datasets, we first defined levels of observer ex‐
pertise and survey effort for each eBird checklist. Expertise was mod‐
elled using the Poisson generalized additive mixed model described 
by Kelling, Johnston, et al. (2015) and Johnston, Fink, Hochachka, and 
Kelling (2018). This model quantifies expertise from eBird checklists 
by estimating the false absence reporting rate of each observer in the 
study region (Kelling, Johnston, et al., 2015). The model relates varia‐
tion in the total number of species reported in each checklist to time of 
day, day of year, distance travelled, time spent observing, habitat, hab‐
itat diversity and protocol type. We extracted habitat classes and hab‐
itat diversity (using the Gini–Simpson diversity index) from the 2011 
National Land Cover Database (Homer et al., 2015). Because observers 
are expected to vary in their ability to detect and identify different spe‐
cies, the model includes a random intercept for each observer as well 
as a random slope for each observer's effect on time spent observing. 
Predictions from this model for a standardized survey then provide 
standardized estimates of relative observer expertise along a contin‐
uous scale. Using these expertise scores, we either used all checklists 
(‘any expertise’), those from the top two‐thirds of observers (‘okay’), 
those from the top third (‘better’), or those from only the top 15% (‘top’).

To cull by effort, we focused on the distance travelled for a 
checklist. We defined four subsets using quartiles of the distribu‐
tion of distances: ‘short’ (all checklists ≤0.805 km in distance trav‐
elled), ‘medium’ (>0.805, ≤1.609 km), ‘lengthy’ (>1.609, ≤3.219 km) 
and ‘very lengthy’ (>3.219, <8.0 km). Unlike the expertise classes, 
which sequentially reduce the size of the dataset, effort subsets 
divided the data into subsets that were equal in size. By combining 
the two culling criteria, we created a total of 16 ‘culled’ datasets.

Finally, to test whether any culling effects could simply be an ar‐
tefact of dataset reduction, we randomly subsetted the eBird data to 
create 16 ‘random’ datasets that matched the size of the 16 ‘culled’ 
datasets. We repeated each of these 16 randomizations ten times.

2.3 | Benchmark data

eBird models were evaluated separately against each of four bench‐
mark datasets collected in different habitats in our region. While 
these datasets differed in the specifics of their study designs, all 
involved systematic surveys using point‐count methods typical of 
many avian studies and used observers skilled in bird identifica‐
tion (Figure 1, Table S1). The ‘Askins’ dataset covered shrubland 
and forest edge habitats (Askins, Folsom‐O'Keefe, & Hardy, 2012). 
‘BBS’ covered primarily forest and developed habitats along road‐
sides as part of the North American Breeding Bird Survey (Pardieck, 
Ziolkowski, Lutmerding, Campbell, & Hudson, 2016), another citizen 
science effort, but one with a systematic survey protocol that skilled 
observers conduct year after year. ‘Klingbeil’ surveys covered forest 
interior sites (Klingbeil & Willig, 2015). ‘SHARP’ consisted of tidal 
marsh habitat surveys (Wiest et al., 2016).

2.4 | Environmental and observation covariates

Species distributions were modelled as functions of environmental 
and observation covariates (Table S2). We chose environmental co‐
variate sets separately for each benchmark dataset given the pri‐
mary habitat(s) sampled. Environmental covariates included class 
variables describing land cover, forest fragmentation and/or wet‐
lands, and numerical variables describing topography, housing den‐
sity and/or income. The same covariate sets were used across eBird 
and benchmark dataset models for a given comparison. Thus, spe‐
cies that appeared in multiple benchmark datasets (e.g. Red‐winged 
Blackbird Agelaius phoeniceus; Table S3) had different covariates for 
each comparison.

All environmental covariates were modelled as the proportion 
(for class variables) or mean (for numerical variables) of that covari‐
ate in a 200‐m radius surrounding the point‐count location (sys‐
tematically collected data), or the reported mid‐point for the eBird 
checklist (citizen science data). A 200‐m radius was chosen because 
it matched a typical detection radius for our species at a point lo‐
cation. Most eBird surveys are travelling surveys, and observers 
sometimes report the beginning or end location rather than, as sug‐
gested, the mid‐point location (Munson et al., 2010). eBird surveys 
also, frequently, cover a larger area than the 200‐m radius would 
encompass. However, because we were challenging noisy citizen 
science data to make predictions to the relatively fine‐scale obser‐
vations in the systematic data, we settled on a radius optimized for 
the systematic data, especially after finding in preliminary analyses 
that eBird surveys trained with covariates calculated at an 800‐m or 
1,500‐m radius did not improve models relative to a 200‐m radius 
(see Appendix S1 for more details, Covariate Scale and Table S4). To 
capture additional variation in the observation process for eBird re‐
cords, models also included time of day, survey duration, distance 
covered and expertise score for the observer.

2.5 | Prediction and evaluation

We identified species with a minimum prevalence in each bench‐
mark dataset of 0.05 for inclusion in our analyses resulting in 173 
species by comparison combinations (Table S3). For each species 
within each benchmark dataset, we ran 177 models using training 
data from eBird (1 full model, 16 culled models, 160 random mod‐
els). In all cases, we modelled species occurrence using classifica‐
tion random forests implemented in the R package randomForest 
v.4.6‐14 (Breiman, 2001; Liaw & Wiener, 2002). We specified that a 
relatively large number of trees (n = 3,000) be used for each model. 
We otherwise used default settings where the number of variables 
tried at each split was the square root of the total number, sampling 
of data was done with replacement, and unstratified class sampling 
was used (see Class Imbalance in Appendix S1 for justification for not 
stratifying). For predictions, we used a consistent time of 7:00 a.m. 
Because distance and expertise vary by culled subset, and duration 
covaries with distance, we used the mean values from each subset as 
the standardized values for predictions to benchmark data.
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To evaluate the eBird‐derived models, we used the area under 
the receiver operating characteristic curve metric (AUC; Fielding & 
Bell, 1997) to assess whether their continuous probability predic‐
tions could discriminate between occurrence and non‐occurrence 
(assumed from non‐detection) in the benchmark data. We compared 
AUC results between models built with the complete eBird dataset 
and those from the culled and random subsets, averaging AUC val‐
ues over the 10 repetitions of each random scenario.

We established benchmark model performance using the bench‐
mark datasets, applying 10‐fold cross‐validation, assessing SDM 
performance using AUC to 10% of the data for each of 10 folds, and 
averaging across the 10 results. To mitigate predictive advantage 
owing to spatial autocorrelation among data points, we used spatial 
sets to group nearby observations when assigning them to testing 
versus training datasets within the 10‐fold procedure (Roberts et al., 
2017). We calculated the performance difference (ΔAUC) relative to 
the equivalent eBird model.

2.6 | Species traits

We summarized four species' characteristics we expected might in‐
fluence citizen science data quality: prevalence, ubiquity, abundance 
and identifiability. Prevalence and ubiquity are measures of how com‐
mon and widespread a species is, respectively. Prevalence was calcu‐
lated as the frequency with which the species was reported across 
eBird checklists and ubiquity as the proportion of 5  ×  5  km cells 
within the study area with records of the species (Figures S1 and S2). 
We used the median abundance from checklists in which a species 
was detected as a measure of local densities (Figure S3). To describe 
prevalence, ubiquity and abundance, we used only eBird checklists 
that met our criteria for use in model building, but further restricted 
the dates to 1 June–15 July to target peak breeding and further ex‐
clude migrating birds. Finally, we assigned each species a measure 
of how easy it is to identify, using the expected rate of reporting a 
species dependent on an observer's expertise, after Johnston et al. 
(2018). We relativized reporting rates across species by dividing that 
of the observer at the 97.5th expertise quantile by the observer at 
the 25th expertise quantile. Thus, species with identifiability values 
around 1 are expected to be reported by observers with modest 
skill at equal rates to those with high skill, whereas those with val‐
ues around 0.5 would be reported half as frequently (Figure S4). To 
examine relationships between each of the species traits and eBird 
model performance relative to the benchmark performance, we plot‐
ted ΔAUC and fit a generalized additive model (GAM) to ΔAUC using 

a smoothing function with 3 knots (R package mgcv v.1.8‐24 via the R 
package ggplot2 v.2_2.2.1, Wickham, 2016; Wood, 2017).

2.7 | Effort and expertise effects

We used general linear models (GLMs) and linear mixed models 
(LMMs) with normal error distributions to assess the effects of cull‐
ing by effort and expertise on ΔAUC. For each species (i) by 1‐4 ( j) 
benchmark datasets and 1‐16 (k) culled data subsets, the response 
variable, ΔAUC, was first rescaled and logit‐transformed:

logit (ΔAUC)i,j,k = logit (AUC (benchmark model)i,j – AUC (citizen sci‐
ence model)i,j,k + 0.50).

We rescaled by adding 0.5 to ΔAUC, as logit‐transformations only take 
values between 0 and 1. The maximum absolute value of the differ‐
ence prior to rescaling was less than 0.5.

To summarize the ability of culling by effort or expertise to 
improve ΔAUC, we ran a set of GLMs for each species by compari‐
son. We calculated the reduction in deviance explained by remov‐
ing a given covariate from the global model (effort  +  expertise) 
and dividing that value by the deviance of the null (intercept‐only) 
model.

We used LMMs with a random species effect in the R package lme4 
v.1.1‐17 (Bates et al., 2014) to assess the effects of different expertise 
and effort culling levels on ΔAUC. We specified non‐ordinal four‐level 
factors to model the effects of culling by the four distance (effort) lev‐
els and four expertise levels. We hypothesized that species' traits may 
influence the effects expertise and effort culling have on ΔAUC and in‐
cluded models with interactions between traits and culling covariates. 
We developed a set of a priori models (Table S5) and ran them for each 
of the four benchmark datasets. We used Akaike's information criterion 
(AIC) to compare models (Burnham & Anderson, 2002).

3  | RESULTS

Using the full dataset, models using eBird citizen science data per‐
formed well (AUC ≥0.7) for 15%–33% of species, depending on 
benchmark dataset (Table 1). Selecting the best model after data 
culling increased the proportion of species with good models to 
28%–58%, with culled datasets generally producing better models. 
In contrast, random data reductions performed similarly to models 
using the full dataset.

F I G U R E  2   (a) Area under the receiver operating characteristic curve (AUC) results quantify the ability of eBird citizen science species 
distribution models to predict species occurrence data for four benchmark datasets associated with different land cover types: Askins 
(shrubland), BBS (mostly forest and developed land), Klingbeil (interior forest) and SHARP (salt marsh). Triangles show benchmark AUC 
values and are based on cross‐validated predictions wherein withheld data were used to evaluate models trained with the benchmark 
datasets. Black dots show AUC values from models that used all citizen science data that met our basic requirements. Box‐whisker plots 
show the distribution of AUC values across 16 models that used culled subsets of the citizen science data and display the median, upper and 
lower quartiles, and extend to maximum and minimum values. (b) Barplots show the proportion of species for which eBird models matched 
or exceeded the benchmark AUC based on using all data, random subsets (not shown in ‘a’) or culled subsets. Random and culled subset 
results are based on the best model for each species
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Models using the full eBird dataset were capable of matching or 
exceeding the benchmark performance produced directly from the 
benchmark datasets, but this happened for only 12%–31% of species, 
depending on the dataset (Figure 2, Table 1). Culled subsets reduced 
the number of records used by between 52% and 90% relative to the 
full dataset (Table S6). However, when the best culled subsets were 
used, the proportion meeting benchmark performance increased to 
40%–70% of species. Models based on random subsets showed no 
improvement compared to the full dataset (16%–25% of species).

Culling eBird citizen science data by survey effort class explained 
more variability in performance difference than culling by expertise 
class across all four benchmark datasets (Figure 3). Consistent with this 
result, the LMMs with greatest model support all included effort as a 

variable but not expertise (Table 2). Although some form of culling by 
effort consistently improved models, there was no consistent pattern 
as to which survey lengths produced the best results. The best citizen 
science model most frequently was from ‘short’ distance surveys (29% 
of cases), but we also found many cases where the best models were 
from ‘medium’ (27%), ‘lengthy’ (22%) or ‘very lengthy’ (22%) surveys.

None of the four species traits contributed as main effects to model 
performance differences between the eBird citizen science models and 
the benchmark models (Table S5; Figure 4). Species prevalence (BBS and 
Klingbeil datasets) and ubiquity (SHARP dataset), however, both appeared in 
interaction with effort (distance class) in the top LMM models for the respec‐
tive datasets (Table 2; Figure 5b‐d). For the Askins dataset, no differences 
between distance classes were found (Figure 5a). For the BBS dataset, there 

F I G U R E  3  Proportion of the difference in model performance explained when culling eBird citizen science data by survey effort versus 
observer expertise. Performance was measured by predicting occurrence in four independent benchmark datasets (‘Askins’, n = 40 species; 
‘BBS’, n = 61; ‘Klingbeil’, n = 25 species; ‘SHARP’, n = 47 species), estimating the area under the receiver operating characteristic curve (AUC) 
and calculating the difference (ΔAUC) compared to predictions from models derived from the benchmark data. Plots display mirrored kernel 
density estimates and extend from minimum to maximum values. White dots show median values
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TA B L E  2  Multi‐model comparison showing the ability of species traits and culling (filtering) procedure to explain differences in the 
performance of culled eBird citizen science species distribution models and benchmark species distribution models

Benchmark dataset Model K logL AIC ΔAIC w

Askins Effort 6 −112.931 237.99 0 0.54

Effort * Ubiquity 10 −109.704 239.76 1.762 0.22

Effort * Identifiability 10 −110.175 240.6991 2.704 0.14

BBS Effort * Prevalence 10 640.6628 −1,261.1 0 1

Effort * Ubiquity 10 633.4751 −1,246.72 14.375 0

Klingbeil Effort * Prevalence 10 −71.0684 162.7025 0 0.39

Effort 6 −75.3815 162.9768 0.2743 0.34

Effort * Ubiquity 10 −72.5682 165.7019 2.9994 0.09

Null 3 −80.6735 167.4076 4.7051 0.04

Effort + Expertise 9 −74.7524 167.9663 5.2638 0.03

Effort * Abundance 10 −73.8252 168.216 5.5135 0.02

Effort * Identifiability 10 −73.8685 168.3025 5.6000 0.02

SHARP Effort * Ubiquity 10 145.5602 −270.824 0 1

Effort * Prevalence 10 139.1015 −257.906 12.917 0

Note: Candidate covariates included survey effort, observer expertise and species traits (abundance, identifiability, prevalence, and ubiquity). 
Columns show number of parameters (K), the log likelihood (logL), Akaike information criterion (AIC), the difference in AIC compared to the top 
model (ΔAIC) for a given dataset, and model weight (w). All models included a random intercept term for species. Models with ΔAIC <6 are shown 
unless one model had all the weight (w = 1) in which case, the next model is also included. Full model sets are shown in Table S5.
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was little difference among distance classes for species of low prevalence, 
but models using shorter distance checklists improved models more than 
those using very lengthy ones for the most prevalent species (Figure 5b). In 
contrast, the Klingbeil dataset indicated slightly improved performance for 

less prevalent species using very lengthy surveys but no difference for more 
prevalent species (Figure 5c). Finally, less ubiquitous species in the SHARP 
dataset were modelled better when using short surveys versus very lengthy 
ones, but this difference disappeared for ubiquitous species.

F I G U R E  4  Effect of species traits on 
the performance of species distribution 
models built with culled eBird citizen 
science data relative to benchmark 
models. Performance difference was 
measured by predicting occurrence 
in four benchmark datasets (‘Askins’, 
n = 40 species; ‘BBS’, n = 61; ‘Klingbeil’, 
n = 25 species; ‘SHARP’, n = 47 species), 
estimating the area under the receiver 
operating characteristic curve (AUC) 
and calculating the difference (ΔAUC) 
compared to predictions from models 
derived from the benchmark data. Plots 
show data points, GAM fitted lines for 
traits as main effects and 95% confidence 
intervals for the four benchmark datasets
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F I G U R E  5  Effects of survey effort (distance travelled) on the performance of species distribution models built with culled eBird citizen 
science data relative to benchmark models. Performance difference was measured by predicting occurrence in four benchmark datasets 
(‘Askins’, n = 40 species; ‘BBS’, n = 61; ‘Klingbeil’, n = 25 species; ‘SHARP’, n = 47 species), estimating the area under the receiver operating 
characteristic curve (AUC) and calculating the difference (ΔAUC) compared to predictions from models derived from the benchmark data. 
Plots show results of best linear mixed models developed to explain ΔAUC for each comparison. For three datasets (b–d), the best model 
included an interaction between distance travelled and one of the species traits while in one dataset (a), the best model did not include an 
interaction with any species traits. Figures illustrate the line of best fit, by distance class and 95% confidence intervals (jittered horizontally 
in b–d)
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4  | DISCUSSION

Accurate maps of species distributions underlie the reliability of 
species conservation assessments and spatial conservation plans 
(Boitani et al., 2011; Kremen et al., 2008). This necessity is yet un‐
realized for the vast majority of species, while the need for such 
knowledge grows ever more critical to curtail biodiversity loss 
(Dirzo et al., 2014; Jetz, McPherson, & Guralnick, 2012). Citizen 
science datasets that provide a large volume of local observations 
over broad areas offer the possibility of using predictive models to 
develop distribution maps (Devictor et al., 2010). Such datasets, 
however, often lack rigorous data collection protocols and require 
little or no formal training of volunteers, suggesting a need to en‐
sure that inherent biases and noise are addressed (Bird et al., 2014). 
We tested whether low‐structure citizen science data could pro‐
duce SDMs of similar quality to those derived from systematically 
collected data. We also tested methods for stringent data filtering 
to evaluate if careful data selection could improve citizen science‐
based SDMs.

We found that SDMs built with low‐structure citizen science 
data can match the performance of those derived from systematic 
‘benchmark’ surveys, but that this was only accomplished in a mi‐
nority of cases. Our analysis is based on just eBird data, but this is 
one of the world's largest and fastest growing citizen science data‐
sets focused on species occurrence data (Hochachka et al., 2012), 
and is representative of many such efforts. Although unable to 
match the benchmark data in a majority of cases, performance of 
the eBird models was still acceptable for many species and, when 
other data are unavailable, use of SDMs derived from citizen sci‐
ence data is likely to be worthwhile. Furthermore, any dataset would 
have an inherent disadvantage when predicting to an independent 
dataset versus internal cross‐validation of the independent data. 
Therefore, our assessment of the performance of eBird models can 
be viewed as conservative.

While larger sample sizes have been shown to reduce bias and 
increase the precision and information content of citizen science 
datasets (Kamp et al., 2016; Munson et al., 2010), our results indi‐
cate substantial improvement by selective data reduction. Culling 
from a large volume of citizen science data allowed us to more than 
double the number of cases that met the benchmark performance 
(86 vs. 42 out of 173) and culled datasets almost always produced 
the best models (156 of 173). We primarily attribute these results to 
culling by survey effort (i.e. distance travelled) rather than observer 
expertise.

Because travel distance relates to the spatial scale of the un‐
derlying bird detections and the benchmark data were based on 
point surveys, we expected short distance subsets to provide 
the best scale match. However, the effects of distance varied by 
benchmark dataset and species traits indicating that spatial‐scale 
matching for noisy citizen science data is complex. Habitat homo‐
geneity, for example, can mitigate locational error in SDMs (Naimi, 
Skidmore, Groen, & Hamm, 2011). In more extensive and contig‐
uous landcover types—for example forest and developed classes 

in our study area—the higher resolution obtained with shorter 
survey distances may not achieve the same benefits as it would 
for patchier habitats. For example, the improvements for shorter 
distance surveys in the SHARP data (Figure 5) might arise because 
shorter surveys are more likely to be precisely located in or close 
to saltmarsh habitat, which occurs only in small patches in our 
study region. Home range sizes—a species trait we could not test 
because we lacked estimates for many species—can also impact 
scale matching (Guisan & Thuiller, 2005).

While variation in observer expertise was related to large dif‐
ferences in reporting rate of individual species, this factor was not 
related to model improvement in culled data subsets (Figure 3; 
Table 2; Figure S4). This result might be surprising as mitigating false 
absences is central to site‐level monitoring or estimating population 
sizes. If, however, false absences are not biased by land cover and 
there are sufficient true positives, occurrence predictions need not 
be compromised. Our expertise measure did not address false posi‐
tive identifications which contribute to bird identification errors re‐
gardless of skill level (Farmer et al., 2012; Kelling, Johnston, et al., 
2015). Thus, additional components of observer expertise still war‐
rant investigation.

Our analysis used one performance metric—AUC, which mea‐
sures the ability of a probabilistic model output to discriminate be‐
tween presences and absences in evaluation data. We chose this 
measure because assessing presence–absence is central to mapping 
species distributions and AUC is a standard tool widely used for as‐
sessing SDM quality. Other metrics could further inform users about 
desired qualities of SDM performance, including metrics that assess 
agreement of mapped probabilities, prevalence‐based metrics and 
calibration metrics (Fletcher & Fortin, 2018; Rödder & Engler, 2011). 
Many standard metrics require thresholding the SDM's probabilistic 
surface into a binary surface, which can be done in many ways and 
in a species‐specific approach. To avoid over‐complicating results 
and interpretation, we chose AUC as a single, standard metric for 
performance, but acknowledge that different metrics may have led 
to different conclusions.

Low‐structure citizen science datasets have the potential to 
fill an important role in conservation planning by providing local 
observations at broad scales enabling improved knowledge of spe‐
cies' distributions. Although these data can produce high‐quality 
predictions to systematically collected occurrence data, our analy‐
ses suggest that low‐structure citizen science are not sufficient to 
replace systematic data collections in many cases. When logistical 
constraints make use of more rigorous methods impossible, or when 
formal cost‐benefit analysis suggests that the benefits of increased 
rigour are outweighed by the lower costs of citizen science data, 
data culling provides a potential mechanism for improving SDM pre‐
dictions from citizen science sources. Although our results show that 
culling can substantially improve predictions, the lack of consistent 
patterns across datasets or species in how best to cull data suggests 
that additional work is needed to explore different options and to 
understand how species traits and data collection methods interact 
to affect model performance.
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