This course is a very brief introduction to the broad topic of SDMs /
ENMs. There are lots of other excellent resources available online, some
which are compiled here.
\(~\)
Tutorials on SDM/ENMs
\(~\)
General spatial data analysis in R
\(~\)
Recommended Reading
Work in progress…
General
- Merow,
C., Smith, M.J., Edwards, T.C., Jr, Guisan, A., McMahon, S.M., Normand,
S., et al. (2014). What do we gain from simplicity versus complexity in
species distribution models? Ecography , 37, 1267–1281.
\(~\)
Best practices
Zurell, D.,
Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., et
al. (2020). A standard protocol for reporting species distribution
models. Ecography, 43, 1261–1277.
Araújo, M.
B., R. P. Anderson, A. M. Barbosa, C. M. Beale, C. F. Dormann, R. Early,
R. A. Garcia, et al. 2019. “Standards for Distribution Models in
Biodiversity Assessments.” Science Advances 5: eaat4858.
Merow,
C., Maitner, B.S., Owens, H.L., Kass, J.M., Enquist, B.J. et al. (2019)
Species’ range model metadata standards: Rmms. Global Ecology and
Biogeography, 28, 1912-1924.
\(~\)
Incorporating adaptive potential
Bush, A., Mokany,
K., Catullo, R., Hoffmann, A., Kellermann, V. et al. (2016)
Incorporating evolutionary adaptation in species distribution modelling
reduces projected vulnerability to climate change. Ecology Letters, 19,
1468-1478.
Chardon, N.I.,
Pironon, S., Peterson, M.L. & Doak, D.F. (2020) Incorporating
intraspecific variation into species distribution models improves
distribution predictions, but cannot predict species traits for a
wide-spread plant species. Ecography, 43, 60-74.
Chen, Q., Yin,
Y., Zhao, R., Yang, Y., Teixeira da Silva, J.A. et al. (2020)
Incorporating local adaptation into species distribution modeling of
paeonia mairei, an endemic plant to china. Frontiers in Plant Science,
10, 1717.
Hällfors,
M.H., Liao, J., Dzurisin, J., Grundel, R., Hyvärinen, M. et al. (2016)
Addressing potential local adaptation in species distribution models:
Implications for conservation under climate change. Ecological
Applications, 26, 1154-1169.
Miller,
J.A. & Holloway, P. (2015) Incorporating movement in species
distribution models. Progress in Physical Geography: Earth and
Environment, 39, 837-849.
Peterson,
M.L., Doak, D.F. & Morris, W.F. (2019) Incorporating local
adaptation into forecasts of species’ distribution and abundance under
climate change. Global Change Biology, 25, 775-793.
Razgour, O., Forester,
B., Taggart, J.B., Bekaert, M., Juste, J. et al. (2019) Considering
adaptive genetic variation in climate change vulnerability assessment
reduces species range loss projections. Proceedings of the National
Academy of Sciences, 116, 10418.
Uden, D.R.,
Allen, C.R., Angeler, D.G., Corral, L. & Fricke, K.A. (2015)
Adaptive invasive species distribution models: A framework for modeling
incipient invasions. Biological Invasions, 17, 2831-2850.
\(~\)
Citizen science data
Bradsworth, N.,
White, J.G., Isaac, B. & Cooke, R. (2017) Species distribution
models derived from citizen science data predict the fine scale
movements of owls in an urbanizing landscape. Biological Conservation,
213, 27-35.
Feldman,
M.J., Imbeau, L., Marchand, P., Mazerolle, M.J., Darveau, M. et
al. (2021) Trends and gaps in the use of citizen science derived data as
input for species distribution models: A quantitative review. PLoS ONE,
16, e0234587.
Fournier,
A.M.V., Sullivan, A.R., Bump, J.K., Perkins, M., Shieldcastle, M.C. et
al. (2017) Combining citizen science species distribution models and
stable isotopes reveals migratory connectivity in the secretive virginia
rail. Journal of Applied Ecology, 54, 618-627.
Gaul, W.,
Sadykova, D., White, H.J., Leon-Sanchez, L., Caplat, P. et al. (2020)
Data quantity is more important than its spatial bias for predictive
species distribution modelling. PeerJ, 8, e10411.
Matutini,
F., Baudry, J., Pain, G., Sineau, M. & Pithon, J. (2021) How citizen
science could improve species distribution models and their independent
assessment. Ecology and Evolution, 11, 3028-3039.
Milanesi,
P., Mori, E. & Menchetti, M. (2020) Observer-oriented approach
improves species distribution models from citizen science data. Ecology
and Evolution, 10, 12104-12114.
Steen, V.A.,
Elphick, C.S. & Tingley, M.W. (2019) An evaluation of stringent
filtering to improve species distribution models from citizen science
data. Diversity and Distributions, 25, 1857-1869.
\(~\)
Model Evaluation
Muscarella,
R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte,
M., et al. (2014). ENMeval: An R package for conducting spatially
independent evaluations and estimating optimal model complexity for
Maxent ecological niche models. Methods Ecol. Evol., 5,
1198–1205.
Kass, J.M.,
Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla‐Buitrago, G.E.,
Boria, R.A., Soley‐Guardia, M. and Anderson, R.P. (2021), ENMeval 2.0:
redesigned for customizable and reproducible modeling of species’ niches
and distributions. Methods in Ecology and Evolution.)
pROC
AUC
Continuous Boyce Index
- Hirzel,
A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006).
Evaluating the ability of habitat suitability models to predict species
presences. Ecological Modelling, 199(2), 142-152.
AIC for SDMs
Warren,
D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent:
the importance of model complexity and the performance of model
selection criteria. Ecological applications, 21(2),
335-342.
Velasco,
J. A., & González-Salazar, C. (2019). Akaike information criterion
should not be a “test” of geographical prediction accuracy in ecological
niche modelling. Ecological Informatics, 51, 25-32.
Leave-one-out CV
Spatial blocks
Block partitions in general
- Roberts,
D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐Arroita,
G., … & Dormann, C. F. (2017). Cross‐validation strategies for data
with temporal, spatial, hierarchical, or phylogenetic structure.
Ecography, 40(8), 913-929.
blockCV package
\(~\)
Background selection
\(~\)
SDMs as biotic variables
Kass,
J.M., Anderson, R.P., Espinosa-Lucas, A., Juárez-Jaimes, V.,
Martínez-Salas, E. et al. (2020) Biotic predictors with phenological
information improve range estimates for migrating monarch butterflies in
mexico. Ecography, 43, 341-352.
Palacio,
F.X. & Girini, J.M. (2018) Biotic interactions in species
distribution models enhance model performance and shed light on natural
history of rare birds: A case study using the straight-billed
reedhaunter limnoctites rectirostris. Journal of Avian Biology, 49,
e01743.
Heikkinen,
R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Körber, J.-H. (2007)
Biotic interactions improve prediction of boreal bird distributions at
macro-scales. Global Ecology and Biogeography, 16, 754-763.
Araújo,
M.B. & Luoto, M. (2007) The importance of biotic interactions for
modelling species distributions under climate change. Global Ecology and
Biogeography, 16, 743-753.
Bateman,
B.L., VanDerWal, J., Williams, S.E. & Johnson, C.N. (2012) Biotic
interactions influence the projected distribution of a specialist mammal
under climate change. Diversity and Distributions, 18,
861-872.
Hof,
A.R., Jansson, R. & Nilsson, C. (2012) How biotic interactions may
alter future predictions of species distributions: Future threats to the
persistence of the arctic fox in fennoscandia. Diversity and
Distributions, 18, 554-562.
Giannini,
T.C., Chapman, D.S., Saraiva, A.M., Alves-dos-Santos, I. &
Biesmeijer, J.C. (2013) Improving species distribution models using
biotic interactions: A case study of parasites, pollinators and plants.
Ecography, 36, 649-656.
Atauchi,
P.J., Peterson, A.T. & Flanagan, J. (2018) Species distribution
models for peruvian plantcutter improve with consideration of biotic
interactions. Journal of Avian Biology, 49, jav-01617.
Wisz,
M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J. et
al. (2013) The role of biotic interactions in shaping distributions and
realised assemblages of species: Implications for species distribution
modelling. Biological Reviews, 88, 15-30.
Belmaker,
J., Zarnetske, P., Tuanmu, M.-N., Zonneveld, S., Record, S. et
al. (2015) Empirical evidence for the scale dependence of biotic
interactions. Global Ecology and Biogeography, 24, 750-761.
\(~\)
Virtual species / simulation
Meynard,
C.N., Leroy, B. & Kaplan, D.M. (2019) Testing methods in species
distribution modelling using virtual species: What have we learnt and
what are we missing? Ecography, 42, 2021-2036.
Inman,
R., Franklin, J., Esque, T. & Nussear, K. (2021) Comparing sample
bias correction methods for species distribution modeling using virtual
species. Ecosphere, 12, e03422.
Santini,
L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M.A.J.
(2021) Assessing the reliability of species distribution projections in
climate change research. Diversity and Distributions, 27,
1035-1050.
Grimmett,
L., Whitsed, R. & Horta, A. (2021) Creating virtual species to test
species distribution models: The importance of landscape structure,
dispersal and population processes. Ecography, 44, 753-765.
Smith,
A.B. & Santos, M.J. (2020) Testing the ability of species
distribution models to infer variable importance. Ecography, 43,
1801-1813.
Leroy,
B., Meynard, C.N., Bellard, C. & Courchamp, F. (2016)
Virtualspecies, an r package to generate virtual species distributions.
Ecography, 39, 599-607.
\(~\)
Integrating dispersal
\(~\)
Occurrence data cleaning
Arlé,
E., Zizka, A., Keil, P., Winter, M., Essl, F., Knight, T., Weigelt, P.,
Jiménez‐Muñoz, M. and Meyer, C. (2021), bRacatus: a method to estimate
the accuracy and biogeographical status of georeferenced biological
data. Methods in Ecology and Evolution.
Zizka,
A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C. et
al. (2019) Coordinatecleaner: Standardized cleaning of occurrence
records from biological collection databases. Methods in Ecology and
Evolution, 10, 744-751.
\(~\)